Matthew Anderson

  • Program Years: 2000-2004
  • Academic Institution: University of Texas
  • Field of Study: Physics
  • Academic Advisor: Richard Matzner
  • Practicum(s):
    Los Alamos National Laboratory (2001)
  • Degree(s):
    Ph.D. Physics, University of Texas at Austin, 2004
    B.S. Physics, Brigham Young University, 1999

Current Status

  • Status: Assistant Scientist, Indiana University
  • Research Area: Numerical Relativity, Relativistic Magneto Hydro Dynamics, High Performance Computing
  • Personal URL: http://www.crest.iu.edu/~andersmw/en/
  • Contact Information: andersmw@indiana.edu
  • Comments

    National Science Foundation Grants:

    Principal Investigator: 1440396: SI2-SSE: Dynamic Adaptive Runtime Systems for Advanced Multipole Method-based Science Achievement

    Co-PI: CCF–0832966: A Study and implementation of Semantic Constructs for Highly Scalable Leading- edge Scientific Computing.

    Co-PI: PHY–0803615: Simulating Neutron Star-Black Hole inspirals: From Binaries to Accretion and Jets.

    Publications

    29. C. Palenzuela, S. Liebling, L. Lehner, O. Caballero, E. O’Connor, and M. Anderson. Effects of the microphysical Equation of State in the mergers of magnetized Neutron Stars with Neutrino Cooling. Phys. Rev. D 92:044045 (2015)

    28. F. Glines, M. Anderson, and D. Neilsen. Scalable relativistic high-resolution shock-capturing for heterogeneous computing. Workshop on Heterogeneous and Unconventional Cluster Architectures and Application, IEEE Cluster 2015, Chicago, USA (2015)

    27. T. Sterling, D. Kogler, M. Anderson, and M. Brodowicz. SLOWER: A performance model for Exascale computing.Supercomputing Frontiers and Innovations 1:42-57 (2014)

    26. M. Anderson, M. Brodowicz, L. Dalessandro, J. DeBuhr, and T. Sterling. A dynamic execution model applied to distributed collision detection. 29th International Supercomputing Conference (ISC), Leipzig, Germany, June 2014.

    25. D. Neilsen, S. L. Liebling, M. Anderson, L. Lehner, E. O’Connor, C. Palenzuela. Magnetized neutron stars with realistic equations of state and neutrino cooling. Phys. Rev. D. 89:104029 (2014).

    24. T. Sterling, M. Anderson, P. Kevin Bohan, M. Brodowicz, A. Kulkarni, and B. Zhang. Towards Exascale Co-design in a Runtime System.Exascale Applications and Software Conference Stockholm, Sweden, April 2014.

    23. M. Anderson, M. Brodowicz, A. Kulkarni, T. Sterling. Performance Modeling of Gyrokinetic Toroidal Simulations for a many-tasking runtime system. In proceedings of The 4th international
    workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems at SC13, 2013.

    22. C. Palenzuela, L. Lehner, M. Ponce, S. Liebling, M. Anderson, D. Neilsen, P. Motl. Linking electromagnetic and gravitational radiation in coalescing binary neutron stars. Phys. Rev. D. 88:043011, 2013.

    21. C. Palenzuela, L. Lehner, M. Ponce, S. Liebling, M. Anderson, D. Neilsen, P. Motl. Electromagnetic and Gravitational Outputs from Binary-Neutron-Star Coalescence. Phys. Rev. Lett. 111:061105, 2013.

    20. T. Sterling, M. Anderson, M. Brodowicz. Modeling and Simulation of Exascale Systems and Applications. In proceedings of the Workshop on Modeling and Simulation of Exascale Systems and Applications, Sep 2013.

    19. T. Gilmanov, M. Anderson, M. Brodowicz, T. Sterling. Application characteristics of many-tasking execution models. In proceedings of the 19th International Conference on Parallel and Distributed Processing Techniques and Applications. July 2013

    18. M. Anderson, M. Brodowicz, H. Kaiser, B. Adelstein-Lelbach, T. Sterling. Tabulated equations of state with a many-tasking execution model. In proceedings of the Workshop on Large-Scale Parallel Processing at IPDPS, May 2013.

    17. T. Sterling, M. Anderson, M. Brodowicz. Achieving scalability in the presence of asynchrony for Exascale computing. In proceedings of the Cetraro Workshop, High Performance Computing 2012, Elsevier 2012.

    16. T. Sterling, M. Anderson. Towards a New Execution Model for HPC Clouds. The International Symposium on Grids and Clouds (ISGC), 2012. Feb 26–Mar 2, 2012, Academia Sinica, Taipei, Taiwan.

    15. C. Dekate, M. Anderson, M. Brodowicz, H. Kaiser, B. Adelstein-Lelbach, T. Sterling, Improving the scalability of parallel N-body applications with an event-driven constraint-based execution model. International Journal of High Performance Computing Applications, 26:3, April 11, 2012

    14. T. Sterling, M. Anderson. Towards a New Execution Model for HPC Clouds. The International Symposium on Grids and Clouds (ISGC), 2012. Feb 26-Mar 2, 2012, Academia Sinica, Taipei, Taiwan.

    13. A. Tabbal, M. Anderson, M. Brodowics, H. Kaiser, T. Sterling, Preliminary design examination of the ParalleX system from a software and hardware perspective. SIGMETRICS Performance Evaluation Review (ACM), Vol. 38, Number 4, Mar 2011

    12. S. Chawla, M. Anderson, M. Besselman, L. Lehner, S. Liebling, P. Motl, D. Neilsen. Mergers
    of magnetized neutron stars with spinning black holes, accretion and fallback. Phys. Rev. Lett.
    105:111101, 2010.

    11. M. Anderson, L. Lehner, M. Megevand, D. Neilsen. Post-merger electromagnetic emissions from disks perturbed by binary black holes. Phys. Rev. D. 81:044004, 2010.

    10. C. Palenzuela, M. Anderson, L. Lehner, S. Liebling, D. Neilsen. Stirring, not shaking: binary black holes' effects on electromagnetic fields. Phys. Rev. Lett. 103:081101, 2009.

    9. M. Megevand, M. Anderson, J. Frank, E. Hirschmann, L. Lehner, S. Liebling, P. Motl, D. Neilsen. Perturbed disks get shocked. Binary black hole merger effects on accretion disks. Phys. Rev. D. 80:024012, 2009.

    8. M. Anderson, E.W. Hirschmann, L. Lehner, S.L. Liebling, P.M. Motl, D. Neilsen, C. Palenzuela, and J.E. Tohline. Magnetized Neutron Star Mergers and Gravitational Wave Signals. Phys. Rev. Lett. 100:191101, 2008.

    7. M. Anderson, E.W. Hirschmann, L. Lehner, S.L. Liebling, P.M. Motl, D. Neilsen, C. Palenzuela, and J.E. Tohline. Simulating binary neutron stars: dynamics and gravitational waves. Phys. Rev. D. 77:024006, 2008.

    6. M. Anderson, J.-H. Kimn. A numerical approach to space-time finite elements for the wave equation. J. Comput. Phys. 226:466-476, 2007.

    5. M. Anderson, E. Hirschmann, S. L. Liebling, D. Neilsen. Relativistic MHD with Adaptive Mesh Refinement. Class. Quantum Grav. 23:6503-6524, 2006.

    4. M. Anderson, L. Lehner, J. Pullin. Arbitrary black-string deformations in the black string-black hole transitions. Phys. Rev. D 73:064011, 2006.

    3. M. Anderson and R. A. Matzner. Extended Lifetime in Computational Evolution of Isolated Black Holes. Found. of Phys. 35:1477, 2005.

    2. S. A. Caveny, M. Anderson, and R. A. Matzner. Tracking Black Holes in Numerical Relativity.
    Phys. Rev. D 68:104009, 2003.

    1. L. Lehner, M. Huq, M. Anderson, E. Bonning, D. Schaefer, and R. Matzner.
    Towards stable evolutions of excised black hole spacetimes via the ADM equations: A spherically symmetric test. Phys. Rev. D 62:044037, 2000.