### Nathaniel Morgan

**Program Years:**2002-2005**Academic Institution:**Georgia Institute of Technology**Field of Study:**Mechanical Engineering**Academic Advisor:**Marc Smith**Practicum(s):**

Los Alamos National Laboratory (2003)**Degree(s):**

Ph.D. Mechanical Engineering, Georgia Institute of Technology, 2005

M.S. Mechanical Engineering, Georgia Institute of Technology, 2003

B.S. Mechanical Engineering, University of Arizona, 2000

#### Current Status

**Status:**Scientist 4, Los Alamos National Laboratory**Research Area:**Computational Hydrodynamics**Personal URL:**https://www.researchgate.net/profile/Nathaniel_Morgan3

#### Comments

My research focuses on developing numerical algorithms suitable for solving the governing equations for multidimensional flows with strong shocks, multiple materials, complex constitutive relationships, and diverse equations of state. The research focuses on both Lagrangian methods and Arbitrary Lagrangian Eulerian methods. My research also addresses necessary data structures for utilizing high performance super computers and hybrid computing architectures including GPUs and MICs.#### Publications

D. Burton, N.R. Morgan, T. Carney, M. Kenamond: Reduction of dissipation in Lagrange cell-centered hydrodynamics (CCH) through corner gradient reconstruction (CGR). Journal of Computational Physics 07/2015; 299:229. DOI:10.1016/j.jcp.2015.06.041M.R.J. Charest, T.R. Canfield, N.R. Morgan, J. Waltz, J.G. Wohlbier: A high-order vertex-based central ENO finite-volume scheme for three-dimensional compressible flows. Computers & Fluids 07/2015; 114. DOI:10.1016/j.compfluid.2015.03.001

N.R. Morgan, J.I. Waltz, D.E. Burton, M.R.J. Charest, T.R. Canfield, J.G. Wohlbier: A point-centered arbitrary Lagrangian Eulerian hydrodynamic approach for tetrahedral meshes. Journal of Computational Physics 02/2015; 290. DOI:10.1016/j.jcp.2015.02.024

J. Waltz, J.G. Wohlbier, L.D. Risinger, T.R. Canfield, M.R.J. Charest, A.R. Long, N. R. Morgan: Performance analysis of a 3D unstructured mesh hydrodynamics code on multi-core and many-core architectures. International Journal for Numerical Methods in Fluids 11/2014; 77(6). DOI:10.1002/fld.3982

N.R. Morgan, J.I. Waltz, D.E. Burton, M.R.J. Charest, T.R. Canfield, J.G. Wohlbier: A Godunov-like point-centered essentially Lagrangian hydrodynamic approach. Journal of Computational Physics 10/2014; 281. DOI:10.1016/j.jcp.2014.10.048

J. Waltz, N.R. Morgan, T.R. Canfield, M.R.J. Charest, J.G. Wohlbier: A nodal Godunov method for Lagrangian shock hydrodynamics on unstructured tetrahedral grids. International Journal for Numerical Methods in Fluids 09/2014; 76(3). DOI:10.1002/fld.3928

J. Waltz, T.R. Canfield, N.R. Morgan, L.D. Risinger, J.G. Wohlbier: Manufactured solutions for the three-dimensional Euler equations with relevance to Inertial Confinement Fusion. Journal of Computational Physics 06/2014; 267:196â€“209. DOI:10.1016/j.jcp.2014.02.040

N.R. Morgan, K.N. Lipnikov, D.E. Burton, M.A. Kenamond: A Lagrangian staggered grid Godunov-like approach for hydrodynamics. Journal of Computational Physics 01/2014; 259:568-597. DOI:10.1016/j.jcp.2013.12.013

N.R. Morgan: A dissipation model for staggered grid Lagrangian hydrodynamics. Computers & Fluids 08/2013; 83:48-57. DOI:10.1016/j.compfluid.2012.05.018

D.E. Burton, T.C. Carney, N.R. Morgan, S.K. Sambasivan, M.J. Shashkov: A cell-centered Lagrangian Godunov-like method for solid dynamics. Computers & Fluids 08/2013; 83:33-47. DOI:10.1016/j.compfluid.2012.09.008

J. Waltz, T.R. Canfield, N.R. Morgan, L.D. Risinger, J.G. Wohlbier: Verification of a three-dimensional unstructured finite element method using analytic and manufactured solutions. Computers & Fluids 07/2013; 81:57-67. DOI:10.1016/j.compfluid.2013.03.025

N.R. Morgan, M.A. Kenamond, D.E. Burton, T.C. Carney, D.J. Ingraham: An Approach for Treating Contact Surfaces in Lagrangian Cell-Centered Hydrodynamics. Journal of Computational Physics 05/2013; In press. DOI:10.1016/j.jcp.2013.05.015

J. Waltz, N.R. Morgan, T.R. Canfield, M.R.J. Charest, L.D. Risinger, J.G. Wohlbier: A three-dimensional finite element arbitrary Lagrangian-Eulerian method for shock hydrodynamics on unstructured grids. Computers & Fluids 01/2013; 92. DOI:10.1016/j.compfluid.2013.12.021