Numerical Modeling of Laboratory Plasmas Using Krylov Methods

Mayya Tokman, California Institute of Technology

The equations of resistive magnetohydrodynamics pose many challenges to computational science. In particular, the presence of widely separated fast and slow scales imposes severe Courant-Friedrichs-Lewy condition on the time step and consequently makes computing long term evolution of low-beta plasmas difficult. It is the long term dynamics, however, that we are interested in the study of solar plasmas and laboratory simulations of prominence eruptions. In this talk we will discuss how new exponential propagation methods can be used to overcome these difficulties in numerical modeling of spheromak plasma experiments and present example simulations which demonstrate this.

Abstract Author(s): Mayya Tokman