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Discussion Overview:
Ø Why is this research important?

Ø What is the Tamped RMI method?

Ø Experimental Design and Facility:  DCS at APS

Ø Results & Model Calibration

Ø Acknowledgements
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Strength defines how materials deform.  Strength can vary drastically as a function of 
applied pressure, temperature, and strain rate.  Extreme conditions not easily measured.
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Unlike quasistatic conditions, there are no ASTM standards or similar to define how 
strength should be measured at the extreme P, T, and ̇𝜖 associated with shock.

Prime, et al, Acta Materialia (2022)
https://doi.org/10.1016/j.actamat.2022.117875

Harold E. Edgerton, 1964
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At SNL-CA, we are developing a new method to 
measure material strengths at extreme pressures 

(~0-100 GPa), temperatures (ambient-melt), and strain 
rates (~105-107 /s):

The Tamped RMI method



The tamped RMI method generates an RMI between two materials, then 
calibrates material parameters against the interfacial deformation.

Stages of Experiment:
1. Impact drives planar shock through 

corrugated driver-tamper interface
2. Tamper is shock compressed and 

corrugation begins inversion. Jet forms.
3. Shocked tamper arrests RMI jet.

Hudspeth et al., J. Appl. Phys. 128, 205901 (2020)

Factors Affecting RMI Inversion Behavior:
• Driver strength, 𝑌!
• Tamper strength, 𝑌"
• Shock stress, 𝜎#
• Density difference/ratio, A= $!%$"

$!&$"
• Corrugation aspect ratio, k𝜂' for sine

By using a liquid tamper, driver strength becomes the only unknown
6



Joe Olles and Matt Hudspeth laid the ground work for the current investigation.
They calibrated the strength of copper via D2O-tamped RMI.

7Olles, et al, JDBM (2020)
Olles, et al, APS DFD (2018)

Y = 0.44, 0.46, 0.48, 0.5 GPa

Jet length (2ηD)

DCS191033 

Perturbation (2ηP)

Each experiment yields one (𝑌, 𝑃, ̇𝜖) 
data point on the yield surface



This study will characterize the dynamic strength of molybdenum (Mo), within the 
achievable (release) pressure ranges of the DCS powder gun:  0-18 GPa
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General Properties:
• Refractory
• Brittle
• Strong
• BCC structure

Quantitative Properties:
• ⍴=10.21 g/cm3
• 𝐶! = 6.27, 𝐶" = 3.31 mm/µs
• 𝜈 = 0.31
• 𝑇#$%& = 2896𝐾 = 0.250	𝑒𝑉

Characterization by Chris Johnson



Perfluorooctane, 1.77 g/ccHeavy Water, 1.11 g/cc

The current study uses D2O and C8F18 as tamping media to vary Atwood number.
Both transmit 1550 nm light and are transparent to the 23-26 kEv X-ray beam.
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• CTH model is 
density-scaled 
version of H2O

• Previously used in 
Olles, et al (2020) 
Cu-D2O research.

• Hugoniot and IOR 
measured by Stacy Guo PDV analysis on-going

22-4-035



Dynamic Measurements:

• Furnish and Chhabildas, 1992:  Y=~1.4 GPa
• Shock and release, 6.5-15.0 GPa pressures

• Millett, et al, 2012:  Y=1.65 GPa
• Lateral stress gauge

• Alexander, et al, 2016:  Y0=1.1 GPa
• MHD compression-shear ramp loading

• C. Johnson, 2021:  YHEL=1.4-1.7, YS=1.1 GPa
• Symmetric oblique experiments

• Some spall experiments showing very low spall 
strength (brittle behavior)

The dynamic strength of molybdenum has been investigated in similar 
pressure regimes, but with alternative techniques.  Y=1.1-1.7 GPa.

10

Jing, et al 2007
Diamond Anvil Cell



Tamped RMI experiments are performed at ANL/WSU’s Dynamic Compression Sector

11
Image Credit:  Chris GarasiImpact Direction

0.0 µs 0.552 µs 0.859 µs 1.165 µs

APS

Target Chamber

DCS, E-Hutch

DCS



Targets are designed to minimize edge effects, hermetically seal liquid, easily align 
X-ray and PDV.  All critical components machined at SNL-CA machine shop.
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Mounting Plate

RMI Target is press-
fit into base/holder

Sealed with O-rings
(Durometer ~50A)

PMMA, POM or PC
Cell and Cap

PDV are precisely aligned to 
look at feature of interest

Red laser beam break (TOBB) used 
for triggering and time registration20 mm



Two forms of data are extracted from XPCI:  jet length and contour
Each data type will be used to separately calibrate Mo yield strength.
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Jet Length:  Proven method, 2-3 points Contour Comparison:  New, more robust

Jet length
(derived from contour)

Full contour 
used in analysis 

(point cloud)

Mo MoLiquid Liquid



Simulations are run with an elastic-perfectly-plastic model, varying yield strength 
until the experimentally measured (arrested) jet length is reproduced.
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Mo-D2O, kη0=0.50, Ta imp, 2.07 km/s, PD = 73.2 GPa, PT = 11.5 GPa

Best fit at 
Y=1.24±0.07 GPa

Jet length



Direct contour comparison is calculated as the sum of minimum distances 
from sim. to exp. point clouds, i.e., models are fit against total strain.

15
In some cases, only central jet [0,500] 
is used because of beam edges, etc.



The pressure, temperature, and strain rate associated with calibrated yield 
strength values are defined by where strain accumulates.
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These histograms are generated for each shot to define P, T*, and ̇𝜖

*



The final product of this investigation is the pressure-, temperature-, and strain 
rate-dependent yield strength of Mo.  Results preliminary, analysis on-going.
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*



The final product of this investigation is the pressure-, temperature-, and strain 
rate-dependent yield strength of Mo.  Results preliminary, analysis on-going.
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Contour calibrated values indicate competing factors of pressure hardening and thermal softening.
Potential for strain or strain rate softening, but all strain rates are similar.

*

*



What’s left in the analysis steps?

• Uncertainty calculations

• Calibration of more complex models:
• Johnson cook
• Steinberg Guinan Lund

• Code-to-code solution verification:
• ALEGRA
• SABLE
• ZAPOTEC
• FLAG

19



In addition to Mo, we have applied the tamped RMI method to a variety of 
metals, ceramics, and polymers.  154 shots completed since joining SNL.
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Cu-CaF2 powder, 40% TMD, 1035 m/s Cu flyer
37.5-50.0-37.5% multi-hemisphere driver

Pt-D2O, 2147 m/s Ta flyer
sinewave driver, kη0 = 0.375
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Upcoming releases based on this work:  
Dynamic strength of B4C powder, SiC powder, CaF2 powder, Al2O3 powder, 

Al2O3-Epoxy (ALOX) composites, Epon828, Pt, and AuSAND2022-9189C
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