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Increased MEMS market drives demand for reliable nanomaterials

MicroElectrolViechanical Systems (MIEMIS)
Global Market
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Fine-grained metals pose as viable solution to high-strength &
radiation tolerant materials

Ultrafine-grained (UFG): 100 nm > d > 1um

Nanocrystalline (NC): d < 100 nm

NC & UFG metals exhibit

[ Increased Strength ]

due to the high-volume fraction of grain boundaries (GBs):

Grain boundaries are a site for defect
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Fine-grained metals pose as viable solution to high-strength &
radiation tolerant materials

Ultrafine-grained (UFG): 100 nm > d > 1um
Nanocrystalline (NC): d < 100 nm

NC & UFG metals exhibit due to the high-volume fraction of grain boundaries (GBs):
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Fine-grained metals pose as viable solution to high-strength &
radiation tolerant materials

Ultrafine-grained (UFG): 100 nm > d > 1um
Nanocrystalline (NC): d < 100 nm

NC & UFG metals exhibit due to the high-volume fraction of grain boundaries (GBs):

Grain boundaries are a site for defect
absorption - defect denuded zone
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Deformation Mechanisms: a function of grain size
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Deformation Mechanisms: a function of grain size

Traditional grain size regime
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Deformation Mechanisms: a function of grain size

Traditional grain size regime
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Deformation Mechanisms: a function of grain size

Deformation mechanisms in
UFG grain size regime are
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Three approaches required to fully characterize deformation mechanisms

Activation Volume V*
is a signature
parameter associated
with deformation
mechanism
bl
Diffusion-based
mechanism ~ 1
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Atomistic models performed on individual mechanisms to
determine the expected activation volume values.

Compare these with experimentally determined to
conclude on the dominant mechanisms.
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Rate controlling
plastic
deformation
mechanisms

f Microstructural Characterization
& TEM Observations

Direct observation of
dislocation and grain boundary
interactions (deformation
mechanisms) during straining.

Also used to characterize defect
content, grain size, texture, etc.
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Deformation mechanisms can be characterized by Activation
Volume V*

Activation volume is a associated with dislocation mechanisms
Energy O At the same activation
Emax = energy, two mechanisms
, < will have different VV*
Yp = Pmbv %
. 0AG” <
ot*
I oeV = >
I Ta Oa2 Stress o
I Zhu et al. Nano and Cell Mechanics: Fundamentals and Frontiers (2013) 313-338
|
X; / X2 Position Atomistic models can estimate V* for individual mechanisms:

Typical V* values:
Diffusion: ~0.1 — 1b3
Cross slip: ~50b3
Dislocation forest interaction: ~1000b3

(b is Burgers vector)

Introduction to Dislocations, Hull and Bacon (2001)



Activation Volume V* measured experimentally by performing
repeated stress-relaxation experiment
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Working parameters of MEMS devices used to conduct

experiments
Capacitive displacement Transmission Electron Microscope
sensors 1 7 . 9 1 mm electrons
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in situ straining and mechanical testing data

T Direction of applied load







Specimen fabrication cleanroom process flow

Optical Lithography Deposition + Lift Off Irradiation Release
W s 5500 E-beam evaporation A portion of Af’ Spe‘?imens at Free-standing thin
o 8 - 8 ot the Sandia National films
e T IR o, Thickness ~ 100-200 nm Laboratory IBL facility

2.8 MeV Au+
ionsfluence 5.5 x 1013
ions/cm?2 ~1 dpa

SEM HV: 5.0 kV
View field: 164 ym
SEM MAG: 3.38 kx  Date(m/dly): 11/23/20
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Specimen fabrication cleanroom process flow

Optical Lithography Deposition + Lift Off Irradiation Release

Small grains Large grains Non-textured Irradiated
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/ Characterizing and comparing behavior of \
as-deposited (non-irradiated) and irradiated ultrafine-grained gold

Irradiation parameters:
2.8 MeV Au+
~1 dpa

Few defects

Many radiation
induced defects

Irradiated

Small grains Large grains
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As-Deposited Au: Variety of deformation mechanisms active

Monotonic response Dislocation emission & absorption at GB Stress-induced GB migration
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Both dislocation- and grain boundary-
based mechanisms active

Which is rate-controlling?
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Irradiated: Increased strength and decreased ductility due to
radiation damage-induced dislocation pinning

Monotonic response
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Stress-induced grain boundary migration leads to defect free
regions
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4
Stress-induced grain boundary migration leads to defect free

regions

®
9
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Stangebye et al., Nano Letters 23 (8) 3282-3290

100 nm

Defect free regions can
now support extended
dislocation glide
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Three approaches required to fully characterize deformation mechanisms

Activation Volume V*
is a signature
parameter associated
with deformation
mechanism
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Diffusion-based
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Compare these with experimentally determined to
conclude on the dominant mechanisms.
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Rate controlling
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f Microstructural Characterization
& TEM Observations

Direct observation of
dislocation and grain boundary
interactions (deformation
mechanisms) during straining.

Also used to characterize defect
content, grain size, texture, etc.
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In situ TEM Activation Volume V* measurements
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L
UFG Au: All V¥ Measurements
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Three approaches required to fully characterize deformation mechanisms

Activation Volume V*
is a signature
parameter associated
with deformation
mechanism
bl
Diffusion-based
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4
FENEB calculations of dislocation mechanisms give V* > 15b3
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4
FENEB calculations of dislocation mechanisms give V* > 15b3
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How do we compare these values to

experimentally determined V* values??
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4
Scaling required to account for grain size difference

» Experimentally: grain size ~ 140 — 760 nm
» Simulations: grain size ~ 10 nm

Hall-Petch-type relationship between grain size (d) and V*

M?ub 1

Experimentally -~ @ _Q KH P\/_Q

measured V*

<AV,

ACt|Vat|On Volume Act|vat|on Volume Of EXperlmenta”y-determlnedV*
inside coarse grains process at grain related to atomically-determined
V,~ Lb? boundaries values via a grain size factor

~250 — 500 b3



g
Dislocation nucleation processes cannot explain low V* values
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Scaling for grain size:

V* ~dV,

Dislocation nucleation processes

cannot explain the measured small VV'*

-> not the rate-controlling
mechanisms
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mechanisms with smaller V.
are operating
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Determine the dominant active
deformation mechanisms through in
situ TEM observations

Characterize how irradiation damage
alters deformation mechanisms

Relate sample-level experimentally
measured V* to individual rate-
limiting unit processes
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