Characterizing Plastic Deformation Mechanisms in Metal Thin Films using in situ TEM Nanomechanics

Sandra Stangebye

2023 DOE NNSA SSGF Annual Review

Increased MEMS market drives demand for reliable nanomaterials

MicroElectroMechanical Systems (MEMS) Global Market

Metallic thin films used for:

- Structural coatings
- Electrical contacts

Optimize mechanical properties of metal thin films

Fine-grained metals pose as viable solution to high-strength & radiation tolerant materials

Ultrafine-grained (UFG): 100 nm > d > 1 μ m Nanocrystalline (NC): d < 100 nm

NC & UFG metals exhibit unique properties due to the high-volume fraction of grain boundaries (GBs):

Fine-grained metals pose as viable solution to high-strength & radiation tolerant materials

Ultrafine-grained (UFG): 100 nm > d > 1 μ m Nanocrystalline (NC): d < 100 nm

NC & UFG metals exhibit unique properties due to the high-volume fraction of grain boundaries (GBs):

3

Fine-grained metals pose as viable solution to high-strength & radiation tolerant materials

Ultrafine-grained (UFG): 100 nm > d > 1 μ m Nanocrystalline (NC): d < 100 nm

NC & UFG metals exhibit unique properties due to the high-volume fraction of grain boundaries (GBs):

Enikeev et al. Mat. Trans. 60 (2019) 1723-1731

Grain boundaries are a site for defect absorption \rightarrow defect denuded zone

Cheng et al. Acta Mat. 51 (2003) 4505-4518

Traditional grain size regime

Boioli et al. Mult. Mod. of Mantle Rheology (2018)

Cheng et al. Acta Mat. 51 (2003) 4505-4518

Grain boundary- based deformation:

- GB sliding
- Grain rotation
- GB migration

Traditional grain size regime

Boioli et al. Mult. Mod. of Mantle Rheology (2018)

Meyers et al. JOM (2006) 41-48

Cheng et al. Acta Mat. 51 (2003) 4505- 4518

Cheng et al. Acta Mat. 51 (2003) 4505-4518

Yu et al. MRS Bulletin 40 (2015) 62-48

Three approaches required to fully characterize deformation mechanisms

Deformation mechanisms can be characterized by Activation Volume V*

Activation volume is a signature parameter associated with dislocation mechanisms

Activation Volume V* measured experimentally by performing repeated stress-relaxation experiment

7

Working parameters of MEMS devices used to conduct experiments

8

in situ straining and mechanical testing data

Direction of applied load

Specimen fabrication cleanroom process flow

Deposition + Lift Off

E-beam evaporation

Thickness ~ 100-200 nm

Irradiation

A portion of Au specimens at the Sandia National Laboratory IBL facility

> Irradiation parameters: 2.8 MeV Au+ ionsfluence 5.5×10^{13} ions/cm² ~1 dpa

Release

Free-standing thin films

Specimen fabrication cleanroom process flow

Characterizing and comparing behavior of as-deposited (non-irradiated) and irradiated ultrafine-grained gold

Many radiation

induced defects

- Few defects

Irradiation parameters: 2.8 MeV Au+ ~1 dpa

As-Deposited Au: Variety of deformation mechanisms active

based mechanisms active

Which is rate-controlling?

Irradiated: Increased strength and decreased ductility due to radiation damage-induced dislocation pinning

Stress-induced grain boundary migration leads to defect free regions

100 nm

Stress-induced grain boundary migration leads to defect free regions

 Defect free regions can now support extended dislocation glide

Which is rate-controlling?

Three approaches required to fully characterize deformation mechanisms

In situ TEM Activation Volume V* measurements

16

UFG Au: All V* Measurements

Three approaches required to fully characterize deformation mechanisms

FENEB calculations of dislocation mechanisms give $V^* > 15b^3$

Grain boundary dislocation nucleation

(b2)

(b4)

Au

Al Cu

0.5

1.0

1.5

Activation energy (eV)

2.0

2.5

3.0

FENEB calculations of dislocation mechanisms give $V^* > 15b^3$

Zhang, Ding et al., Acta Mat. 237 (2022) 118155

Scaling required to account for grain size difference

- ➢ Experimentally: grain size ~ 140 − 760 nm
- Simulations: grain size ~ 10 nm

Hall-Petch-type relationship between grain size (d) and V^* :

Conrad's model:

Dislocation nucleation processes cannot explain low V* values

Acknowledgement

Advisors: Dr. Olivier Pierron & Dr. Joshua Kacher

Collaborators: Dr. Ting Zhu (ME), Dr. Yin Zhang, Dr. Xing Liu, Kunqing Ding

Committee Members: Dr. Naresh Thadhani (MSE), Dr. Hamid Garmestani (MSE)

Others: Dr. Yong Ding (GT), Dr. Khalid Hattar (Sandia), Dr. Eric Lang (Sandia, UNM)

Work supported by DOE BES #DE-SC0018960

DOE NNSA SSGF #DE-NA0003960

What's next?? Working on R&D for Radar systems!

