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• Composed of several element types with no dominant species 
• Combination of high strength and toughness

• Huge, unexplored composition space

What are multi-principal element alloys?
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Traditional Alloy MPEA

Miracle et al. Acta Mater, 122:448-511, 2017. 
Senkov, O. N. et al. (2018). J. Mater. Res., 33(19), 3092-3128.



• Dislocations are defined by their Burgers vector, line direction, and slip plane 

Dislocations control plastic deformation
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𝑏𝑏

𝑛𝑛

Cai, W., & Nix, W. D. (2016). Imperfections in Crystalline Solids. 

Screw dislocation: 𝑏𝑏 parallel to line direction
Edge dislocation: 𝑏𝑏 orthogonal to line direction



• Mesoscale, energy-based dislocation model
• Computationally efficient, can run large numbers of simulations

• Uses scalar order parameters (𝜙𝜙) to track dislocation structure
• 𝜙𝜙 = 0: Unslipped
• 𝜙𝜙 = 1: Slipped
• 0 < 𝜙𝜙 < 1: Dislocation

Phase-field dislocation dynamics
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𝜙𝜙 = 0

𝜙𝜙 = 1 𝑏𝑏

𝐸𝐸 = 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑒𝑒

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝜙𝜙 = 1
2
𝜖𝜖 − 𝜖𝜖𝑝𝑝 𝜙𝜙 ⋅ 𝐶𝐶[𝜖𝜖 − 𝜖𝜖𝑝𝑝 𝜙𝜙 ]

Elastic interaction energy Externally applied energy Energy to break bonds
(material specific)

𝜖𝜖𝑝𝑝 𝜙𝜙 =
b𝜙𝜙
2d (s ⊗ n + n ⊗ s)

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒 𝜙𝜙 = 𝜎𝜎𝑒𝑒𝑝𝑝𝑝𝑝 ⋅ 𝜖𝜖𝑝𝑝 𝜙𝜙
𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑒𝑒 𝜙𝜙 =

𝐸𝐸𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈
𝑑𝑑𝑒𝑒𝑒𝑒𝑙𝑙𝑝𝑝

sin2 𝜋𝜋𝜙𝜙
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𝜙𝜙 = 0

𝜙𝜙 = 1 𝑏𝑏
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Total energy minimized with Ginzburg-Landau Equation

𝑑𝑑𝜙𝜙
𝑑𝑑𝑑𝑑 = −𝑚𝑚𝑑𝑑𝑙𝑙𝑒𝑒𝑒𝑒

𝜕𝜕𝐸𝐸
𝜕𝜕𝜙𝜙



• USFE measures energy required to break bonds across the slip plane
• Used to parameterize lattice energy in PFDD

Unstable stacking fault energy (USFE)
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USFE



• MPEAs have a disordered lattice
• Local USFE will vary depending on composition and local atomic configurations

Unstable stacking fault energy in an MPEA
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𝝉𝝉 𝝉𝝉



Unstable stacking fault energy – MoNbTi 
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Simulating dislocation multiplication
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PFDD Simulation
Frank-Read sources are common 
mechanism for dislocation generation



• Both screw and edge sources are controlled by 
kink-pair nucleation into low USFE regions

• Change in mechanism causes more severe 
scaling with Frank-Read source length

Frank-Read source activation mechanism
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𝑏𝑏

𝑏𝑏

𝑏𝑏

𝑏𝑏

Smith, L. T. W, Su, Y., Xu, S., Hunter, A., & Beyerlein, I. J. (2020). Int J Plasticity, 134, 102850.



MPEA lattices are disordered in the long-range, but there is thermodynamically driven local order

The role of short-range order in MPEAs
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TaNbTi
• Less SRO

MoNbTi
• More SRO

Fernández-Caballero
et al. J Phase Equilib Diff, 
38:391-403, 2017.

MoNbTaVW Equilibrium Structure at 400K



Composition-dependent USFE

June 29th, 2023 12

USFE calculated with 
interatomic potential along 
different (110) planes with 
varying local compositions



Edge Dislocation Glide
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Screw Dislocation Glide
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SRO effects on dislocation critical stress
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Lower stresses 
required for glide 
in TaNbTi

𝜎𝜎𝑙𝑙
𝜎𝜎𝑙𝑙 𝑅𝑅𝑈𝑈𝑈𝑈

𝜎𝜎𝑓𝑓 − 𝜎𝜎𝑙𝑙
𝜎𝜎𝑙𝑙

𝜎𝜎𝑓𝑓 − 𝜎𝜎𝑙𝑙
𝜎𝜎𝑙𝑙 𝑅𝑅𝑈𝑈𝑈𝑈

Degree of SRO

Degree of SRO

SRO decreases 
hardening

SRO increases 
critical stress
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• Refractory metals easily absorb interstitial 
contaminants like O, H, and C from the 
atmosphere 

• Interstitials generally increase yield strength 
at the expense of ductility

How do interstitials affect dislocation 
mechanisms and stresses?

Model systems: Nb-O and W-H

Problem: Interstitial Embrittlement
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Yang, P. J. et al. (2019). Acta Mater, 168, 331–342.



• Interstitials create a distortion in the lattice
• Interstitials can interact with dislocations via their stress fields (long-range) or directly at the 

dislocation core (short-range) 

Interstitials in BCC lattices
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• Dislocations have long-range stress fields: σ ∝ 1
𝑟𝑟

• Interstitials interact with these stress fields and form 
atmospheres around dislocation cores

• Interstitials can pin dislocations or cause cross slip and 
debris formation

Long-Range Interactions
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Edge Dislocation

Cai, W., & Nix, W. D. (2016). 
Imperfections in Crystalline 
Solids. 

Yang, P. J. et al. (2019). Acta 
Mater., 168, 331–342.



• Interstitials change the structure and energy of a dislocation core
• Binding energy at dislocation core can pin the dislocation

Short-Range Interactions
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Lüthi, B. et al. (2018). Computational 
Materials Science, 148, 21–26.

Easy Dislocation Core Hard Dislocation Core



• PFDD tracks dislocation structure through 𝜙𝜙
• 𝜙𝜙 = 0: Unslipped
• 𝜙𝜙 = 1: Slipped
• 0 < 𝜙𝜙 < 1: Dislocation

Interstitials in PFDD
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𝐸𝐸 = 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑒𝑒

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝜙𝜙 =
1
2 𝜖𝜖 − 𝜖𝜖𝑝𝑝 𝜙𝜙 ⋅ 𝐶𝐶 𝜖𝜖 − 𝜖𝜖𝑝𝑝 𝜙𝜙

Elastic interaction energy Externally applied energy Energy to break bonds
(material specific)

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒 𝜙𝜙 = 𝜎𝜎𝑒𝑒𝑝𝑝𝑝𝑝 ⋅ 𝜖𝜖𝑝𝑝 𝜙𝜙
𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑒𝑒 𝜙𝜙 =

𝐸𝐸𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈
𝑑𝑑𝑒𝑒𝑒𝑒𝑙𝑙𝑝𝑝

sin2 𝜋𝜋𝜙𝜙



• PFDD tracks dislocation structure through 𝜙𝜙
• 𝜙𝜙 = 0: Unslipped
• 𝜙𝜙 = 1: Slipped
• 0 < 𝜙𝜙 < 1: Dislocation

• Add a new parameter 𝑐𝑐 to track local interstitial concentration

Interstitials in PFDD
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𝐸𝐸 = 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑒𝑒

Elastic interaction energy Externally applied energy Energy to break bonds
(material specific)

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒 𝜙𝜙 = 𝜎𝜎𝑒𝑒𝑝𝑝𝑝𝑝 ⋅ 𝜖𝜖𝑝𝑝 𝜙𝜙

Long-range, elastic interactions Short-range, core interactions

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝜙𝜙, 𝑐𝑐 =
1
2 𝜖𝜖 − 𝜖𝜖𝑝𝑝 𝜙𝜙 − 𝜖𝜖𝑙𝑙𝑖𝑖𝑒𝑒(𝑐𝑐)

⋅ 𝐶𝐶 𝜖𝜖 − 𝜖𝜖𝑝𝑝 𝜙𝜙 − 𝜖𝜖𝑙𝑙𝑖𝑖𝑒𝑒 𝑐𝑐
𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑒𝑒 𝜙𝜙, 𝑐𝑐 =

𝐸𝐸𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝑐𝑐)
𝑑𝑑𝑒𝑒𝑒𝑒𝑙𝑙𝑝𝑝

sin2 𝜋𝜋𝜙𝜙



𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝜙𝜙, 𝑐𝑐 =
1
2
𝜖𝜖 − 𝜖𝜖𝑝𝑝 𝜙𝜙 − 𝜖𝜖𝑙𝑙𝑖𝑖𝑒𝑒(𝑐𝑐) ⋅ 𝐶𝐶 𝜖𝜖 − 𝜖𝜖𝑝𝑝 𝜙𝜙 − 𝜖𝜖𝑙𝑙𝑖𝑖𝑒𝑒 𝑐𝑐

• Interstitial strain given by 𝜖𝜖𝑙𝑙𝑖𝑖𝑒𝑒 𝑐𝑐 = 𝜆𝜆𝑙𝑙𝑖𝑖𝑒𝑒𝑐𝑐
• 𝜆𝜆𝑙𝑙𝑖𝑖𝑒𝑒 determined from experiments or atomistic calculations

Long-range interactions in PFDD
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O occupies octahedral sites H occupies tetrahedral sites

W-HNb-O

𝜆𝜆𝑙𝑙𝑖𝑖𝑒𝑒 =
0.485 0 0

0 −0.0645 0
0 0 −0.0645

 

𝜆𝜆𝑙𝑙𝑖𝑖𝑒𝑒 =
0.0677 0 0

0 0.0677 0
0 0 0.0677

 

Three possible orientations Only one possible orientation



𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑒𝑒 𝜙𝜙, 𝑐𝑐 =
𝐸𝐸𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝑐𝑐)
𝑑𝑑𝑒𝑒𝑒𝑒𝑙𝑙𝑝𝑝

sin2 𝜋𝜋𝜙𝜙

• Need to calculate USFE for different interstitial concentrations
• Idea: calculate interaction energy of different interstitial sites

• 𝐸𝐸𝑙𝑙𝑖𝑖𝑒𝑒−𝑈𝑈𝑈𝑈: change in stacking fault energy due to interstitial 

  𝐸𝐸𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑐𝑐 = 𝐸𝐸𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 0 + ∑𝑙𝑙𝑖𝑖𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖−𝑆𝑆𝑆𝑆
𝑖𝑖

𝐴𝐴
 

Short-range interactions in PFDD
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Pure metal USFE Adjustment due to 
interstitials



Dislocation slip is non-conserved:
𝑑𝑑𝜙𝜙
𝑑𝑑𝑑𝑑

= −𝑚𝑚𝑑𝑑𝑙𝑙𝑒𝑒𝑒𝑒
𝜕𝜕𝐸𝐸
𝜕𝜕𝜙𝜙

Interstitial concentration is conserved:
𝑑𝑑𝑐𝑐
𝑑𝑑𝑑𝑑

= ∇ ⋅ 𝑚𝑚𝑙𝑙𝑖𝑖𝑒𝑒∇𝜇𝜇

Chemical potential: 𝜇𝜇 = 𝜕𝜕𝑈𝑈
𝜕𝜕𝑙𝑙

• Interstitials will flow towards lower chemical potential regions
• When there are multiple site types/orientations available, interstitials adopt the lowest energy 

configuration

Evolution of concentration in PFDD
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Initially homogeneous concentration 𝑐𝑐0 = 0.01

Screw dislocation interstitial atmospheres

25



Screw dislocation interstitial atmospheres
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Long-range chemical potential W-HNb-O

Long-range chemical potential



Initially homogeneous concentration 𝑐𝑐0 = 0.01

Edge dislocation interstitial atmospheres
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W-HNb-O



Initially homogeneous concentration 𝑐𝑐0 = 0.01

Edge dislocation interstitial atmospheres
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W-HNb-O Long-range chemical potential

Long-range chemical potential



• Dislocations can glide a short distance before becoming pinned 
again (initial stress)

• Screw dislocation initial stress decreases with interstitial 
concentration for both Nb-O and W-H

• Breakaway stress for Nb-O increases with O concentration

• Breakaway stress for W-H is largely unaffected by concentration 
for both screw and edge

Critical glide stresses
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Initial stress

W-H

Nb-O



• Refractory MPEAs show promise as high-temperature materials 
• Dislocation mechanisms in MPEAs differ from pure refractory 

alloys
• Dislocations controlled by athermal kink-pair nucleation
• SRO increases critical dislocation stresses

• Interstitial-dislocation interactions must be understood for refractory 
alloys

• O and H create different atmospheres due to their different site 
type occupation

• H and O can alter dislocation behavior in opposite ways

• Future work
• Include temperature in PFDD for thermally-activated 

mechanisms (kink-pair nucleation)

Conclusions and Outlook
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Temperature in PFDD
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Temperature in PFDD

Thank you!
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