

Towards Tunable Laser-Driven Particle Sources: New Scaling Relationships, Analysis Tools and Technology in Laser-Driven Particle Acceleration

Raspberry Simpson SSGF/LRGF Program Review 29 June 2023

Collaborators and Sponsors

LLNL	GA Tech	MIT	UR-LLE
Tammy Ma Derek Mariscal	Elizabeth Grace	Lindley Winslow	Dave Canning Dino Mastrisomone
Graeme Gordon Scott Blagoje Djordjevic Paul King	Georgia Tech	14117	
Dean Rusby	RAL	General Atomics	FAMU
Shaun Kerr Jackson Williams Felicie Albert Art Pak Nuno Lemos	Chris Armstrong	Mario Manuel	Adeola Aghedo
Andrew Mackinnon	UCLA	Texas Petawatt	UCSD
Andrew Macphee Timo Bremer Rushil Anirudh Kelly Swanson	Mitchell Sinclair UCLA	Isabella Pagano	Joohwan Kim
Joshua Ludwig Scott Wilks Andreas Kemp			LRG

Ultra-intense short-pulse lasers can be used to generate beam-like sources of highly energetic particle and photons

- Laser-driven particle acceleration can be applied to many interdisciplinary applications ranging from multimodal particle radiography, tomography, studies in materials in extreme environments and even some fusion energy schemes
- Emerging technologies like high-repetition rate laser systems and machine learning will allow for another leap in the field of laser-driven particle acceleration by aiding in the long-standing goal of tunable and predictable laser-driven sources
- My work adds to the body of work addressing this goal by:
 - Investigating new empirical relationships for laser-driven proton acceleration
 - Conducting new measurements of the accelerating electric field responsible for laser-driven proton acceleration
 - Demonstration of a new analysis methodology using machine learning
 - A new proposed methodology that combines experimental data, simulations and machine learning to realize the goal of a predictive framework for laser-driven proton acceleration

Summary

Ultra-intense short-pulse lasers can be used to generate beam-like sources of highly energetic particle and photons

- Laser-driven particle acceleration can be applied to many interdisciplinary applications ranging from multimodal particle radiography, tomography, studies in materials in extreme environments and even some fusion energy schemes
- Emerging technologies like high-repetition rate laser systems and machine learning will allow for another leap in the field of laser-driven particle acceleration by aiding in the long-standing goal of tunable and predictable laser-driven sources
- My work adds to the body of work addressing this goal by:
 - Investigating new empirical relationships for laser-driven proton acceleration
 - Conducting new measurements of the accelerating electric field responsible for laser-driven proton acceleration
 - Demonstration of a new analysis methodology using machine learning
 - A new proposed methodology that combines experimental data, simulations and machine learning to realize the goal of a predictive framework for laser-driven proton acceleration

Summary

Laser intensity has grown substantially over the last two decades enabling novel exploration of laser-matter interactions

Background

Laser intensity has grown substantially over the last two decades enabling novel exploration of laser-matter interactions

Ref: G. Morou et al

Background

Laser-matter interactions enable many interdisciplinary applications in high-energy-density science

Au - Before

Proton Radiography

Au - After

Material Science at Extremes

Chen et al. MRE (2019)

Non-Destructive Evaluation

R Nelson et al. J. Imaging (2018)

Benefits

Fusion Energy

Nuclear Reactions in Plasmas

Medical Physics

Laser-matter interactions enable many interdisciplinary applications in high-energy-density science

Realizing these applications requires a tool that can predictably relate laser and target inputs to the characteristics of the output accelerated particle characteristics. Then characteristics like the **particle spectra, dose and spot-size could be tailored on-the-fly for each application**

Chen et al. MRE (2019)

Benefits

E (kV/cm)

TNSA

Ref: Simulations from J. Kim

Time

Ref: Simulations from J. Kim

Ref: Simulations from J. Kim

Time

Ref: Simulations from J. Kim

Short-pulsed..... petawatt laser

Plasma blowoff

Bulk target

23

My research focuses on building new frameworks for understanding and ultimately controlling these complex systems

"Smart" Laser-Driven Sources – Using machine learning based tools for control, inference and physics understanding of laser-driven sources

Dynamic experiments for control – Creating experiments to both study the driving mechanism of laser-driven sources and to optimize them

Brute Force Empiricism – Gathering experimental data on how laser-driven sources *scale* with laser parameters Summarv

My research focuses on building new frameworks for understanding and ultimately controlling these complex systems

Brute Force Empiricism – Gathering experimental data on how laser-driven sources *scale* with laser parameters Summary

There is already a large body of data that provides the foundation for empirical scalings of TNSA sources

^[1] Adapted from Mariscal et al., POP 26, 043110 (2019)

Sub-ps Regime

ア

TNSA in the sub-ps regime is well described by a collection of **relationships**

Fuchs Scaling

However, scaling laws have some limitations when extending them to different laser parameter regimes

Fuchs Scaling

However, scaling laws have some limitations when extending them to different laser parameter regimes

Fuchs Scaling

Recent results show an enhancement in laser-driven proton energies when compared to established scaling laws

Fuchs Scaling for Max Proton Energy $E_{max} = 2T_{hot} [\ln(t_p + (t_p^2 + 1)^{1/2})]^2$ $t_p = \omega_{pi} \tau_{acc} / 2 \exp(1)$ $\tau_{acc} = 1.3 \tau_{Laser}$ [2] J. Fuchs et al., Nat. Phys. 2.1 (2006) Ponderomotive Scaling for Electron Temperature $T_{hot}[MeV] \approx 0.511 \left(\sqrt{1 + \frac{I_{18}\lambda_u^2}{1.37} - 1} \right)$

[3] S. C. Wilks, et al., PRL. 69 (1992)

Multi-ps Data

The Titan laser provided an opportunity to explore this regime vith a detailed scaling study of proton and electron characteristics

Twelve shots were taken scanning the multi-ps, sub-to-quasi relativistic regime

[6] R. Simpson et al., PoP 28, 013108 (2021)

Titan

Electron and proton spectra were measured as a function of varying laser pulse duration

Multiple (time-integrated) particle diagnostics were used to measure proton and electron spectra

Titan

Electron Measurements

ア

ponderomotive scaling and are dependent on pulse length

Electron Measurements

ponderomotive scaling and are dependent on pulse length

Wilks Ponderomotive Scaling

$$T_{hot}[MeV] \approx 0.511 \left(\sqrt{1 + \frac{I_{18}\lambda_u^2}{1.37}} - 1 \right)$$

[6] S. C. Wilks, et al., PRL. 69 (1992)

Electron Measurements

ponderomotive scaling and are dependent on pulse length

$$\frac{VIIKS PONDEROMOTIVE Scaling}{T_{hot}[MeV]} \approx 0.511 \left(\sqrt{1 + \frac{I_{18}\lambda_u^2}{1.37}} - 1\right)$$

[6] S. C. Wilks, et al., PRL. 69 (1992)

Beg Scaling

$$T_{hot}[MeV] \approx 0.215 \left(I_{18} \lambda_u^2 \right)^{1/3}$$

[7] Haines, et al., PRL. 102, 045008 (2009)

Electron Measurements

ponderomotive scaling and are dependent on pulse length

The relationship between laser intensity and maximum proton energy in multi-ps regime was also measured

Proton Measurement

ア

The Fuchs model does not capture the relationship between intensity and proton energy in this regime

Proton Measurement

Proton Measurement A new scaling model was used that better captures the ア relationship between intensity and max proton energy in this study

The modified model uses Brenner et al. description for the acceleration time and enhances the hot electron temperature

Proton Measurement

The modified model uses Brenner et al. description for

Proton Measurement

the acceleration time and enhances the hot electron temperature

Fuchs Scaling for Max Proton Energy

$$E_{max} = 2T_{hot} [\ln(t_p + (t_p^2 + 1)^{1/2}]^2$$

$$t_p = \omega_{pi}\tau_{acc}/2 \exp(1)$$

$$\tau_{acc} = \sqrt{\tau_{Laser}^2 + \tau_{expansion}^2 + \left(\frac{D_{Laser}}{2u_e}\right)^2}$$
[12] C. Brenner et al. PPCF 56,8 (2014)
Ponderomotive Scaling for Electron Temperature
$$T_{hot}[MeV] \approx 5 \times T_{Wilks}$$

[3] S. C. Wilks, et al., PRL. 69 (1992)

This new scaling has been key in development of laserdriven proton and neutron sources on the NIF-ARC facility

R. Simpson et al. PoP (2021)

43

New Scaling

7

This new scaling has been key in development of laserdriven proton and neutron sources on the NIF-ARC facility

44

New Scaling

My research focuses on building new frameworks for understanding and ultimately controlling these complex systems

"Smart" Laser-Driven Sources – Using machine learning based tools for control, inference and physics understanding of laser-driven sources Summary

High-repetition rate laser systems are coming on-line around the world can accelerate the rate of learning in laser-plasma research

Background

High repetition-rate (HRR) lasers represent a major paradigm shift in laser technology

Research in laser-matter interactions are moving towards an integrated approach

Research in laser-matter interactions are moving towards an integrated approach

HRR

Understanding the dynamic of the accelerating field will be crucial for a generalized model for laser-driven particle acceleration

The central goal of this future work is to directly relates the time-dependent physics of the sheath field and its properties, like its strength and spatial profile, to characteristics of the accelerated particles.

Future Work

My research focuses on building new frameworks for understanding and ultimately controlling these complex systems

These research thrusts represent foundational steps towards <u>predictable</u> laser-driven particle acceleration

Summarv

Thank you to Krell, the LRGF Program and everyone that makes this community possible !