
Raspberry Simpson
SSGF/LRGF Program Review

29 June 2023

Towards Tunable Laser-Driven Particle Sources:
New Scaling Relationships, Analysis Tools and 

Technology in Laser-Driven Particle Acceleration



Collaborators and Sponsors 

General Atomics RAL

MITLLNL UR-LLE GA Tech
Tammy Ma 
Derek Mariscal 
Graeme Gordon Scott
Blagoje Djordjevic
Paul King
Dean Rusby 
Shaun Kerr 
Jackson Williams 
Felicie Albert 
Art Pak 
Nuno Lemos 
Andrew Mackinnon
Andrew Macphee
Timo Bremer 
Rushil Anirudh
Kelly Swanson
Joshua Ludwig
Scott Wilks
Andreas Kemp

Lindley WinslowElizabeth Grace 

FAMU

UCLA Texas Petawatt

Chris Armstrong Mario Manuel Adeola Aghedo

Mitchell Sinclair Isabella Pagano

Dave Canning 
Dino Mastrisomone
 

UCSD

Joohwan Kim

2



Summary

• Laser-driven particle acceleration can be applied to many interdisciplinary applications ranging from multi-
modal particle radiography, tomography, studies in materials in extreme environments and even some 
fusion energy schemes

• Emerging technologies like high-repetition rate laser systems and machine learning will allow for another 
leap in the field of laser-driven particle acceleration by aiding in the long-standing goal of tunable and 
predictable laser-driven sources

• My work adds to the body of work addressing this goal by:
• Investigating new empirical relationships for laser-driven proton acceleration
• Conducting new measurements of the accelerating electric field responsible for laser-driven proton 

acceleration
• Demonstration of a new analysis methodology using machine learning 
• A new proposed methodology that combines experimental data, simulations and machine learning to 

realize the goal of a predictive framework for laser-driven proton acceleration 

Ultra-intense short-pulse lasers can be used to generate beam-like 
sources of highly energetic particle and photons
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BackgroundLaser intensity has grown substantially over the last two decades 
enabling novel exploration of laser-matter interactions

Ref: G. Morou et al 
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BackgroundLaser intensity has grown substantially over the last two decades 
enabling novel exploration of laser-matter interactions



Background

Petawatt-class laser systems are in-demand globally

All PW-class
(> 0.5 PW) laser facilities

Single-Shot
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High-Rep-Rated (HRR)
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Laser-plasma interactions from short pulse 
duration(~picosecond), ultra-intense lasers can generate 

bright x-ray and particle sources 
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BenefitsLaser-matter interactions enable many interdisciplinary 
applications in high-energy-density science 
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BenefitsLaser-matter interactions enable many interdisciplinary 
applications in high-energy-density science 

Realizing these applications requires a tool that can predictably relate laser and target inputs to 
the characteristics of the output accelerated particle characteristics. Then characteristics like the particle 

spectra, dose and spot-size could be tailored on-the-fly for each application
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TNSATarget Normal Sheath Acceleration (TNSA) allows for the generation 
of high-energy beam-like sources of ions
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TNSATarget Normal Sheath Acceleration (TNSA) allows for the generation 
of high-energy beam-like sources of ions
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TNSAThe electric field responsible for acceleration has structure and 
evolves in time and space 
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TNSAThe electric field responsible to acceleration has structure and 
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TNSAThe electric field responsible to acceleration has structure and 
evolves in time and space 
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TNSAThe electric field responsible to acceleration has structure and 
evolves in time and space 



Laser-plasma interactions from short pulse 
duration(~picosecond), ultra-intense lasers can generate bright 

x-ray and particle sources 
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Summary

Brute Force Empiricism – Gathering 
experimental data on how laser-driven sources 
scale with laser parameters

Dynamic experiments for control  – Creating 
experiments to both study the driving 
mechanism of laser-driven sources and to 
optimize them 

”Smart” Laser-Driven Sources – Using machine 
learning based tools for control, inference and 
physics understanding of laser-driven sources  

My research focuses on building new frameworks for 
understanding and ultimately controlling these complex systems
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There is already a large body of data that provides the 
foundation for empirical scalings of TNSA sources 

[1] Adapted from Mariscal et al., POP 26, 043110 (2019)

Sub-ps Regime
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TNSA in the sub-ps regime is well described by a collection of 
established scaling relationships

[1] Adapted from Mariscal et al., POP 26, 043110 (2019)

Fuchs Scaling for Max Proton Energy

[2] J. Fuchs et al., Nat. Phys. 2.1 (2006)

[3] S. C. Wilks, et al., PRL. 69 (1992)

Ponderomotive Scaling for Electron Temperature

Fuchs Scaling



However, scaling laws have some limitations when extending 
them to different laser parameter regimes
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Fuchs Scaling

Experimental Data Points for the 
NIF/ARC laser 

NIF/ARC 
(LLNL)

[1] Mariscal et al., POP 26, 043110 (2019)



30

[1] Adapted from Mariscal et al., POP 26, 043110 (2019)
[4] Yogo et al. Sci Rep 7, 42451 (2017)
[5] Flippo et al. J Phys: Conf Ser 244, 022033 (2010)

Recent results show an enhancement in laser-driven proton 
energies when compared to established scaling laws 

TNSA Proton 
Studies from 
Multi-ps 
Petawatt 
Facilities, [1], 
[4-5]

Fuchs Scaling for Max Proton Energy

[2] J. Fuchs et al., Nat. Phys. 2.1 (2006)

[3] S. C. Wilks, et al., PRL. 69 (1992)

Ponderomotive Scaling for Electron Temperature

Multi-ps Data
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Titan Laser 
(1-20 ps, 250 J)

The Titan laser provided an opportunity to explore this regime 
with a detailed scaling study of proton and electron characteristics 

Twelve shots were taken scanning the multi-ps, sub-to-quasi relativistic regime

TITAN Scaling 
Study

Titan

[6] R. Simpson et al., PoP 28, 013108 (2021)  
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Electron and proton spectra were measured as a function of 
varying laser pulse duration 

Titan

Multiple (time-integrated) particle diagnostics were used to measure proton and electron spectra 

f/10 parabolic mirror 
15µm-thick Al target 

TITAN 
Laser Radiochromic Stack

Electron 
Spectrometer 

12˚ from target 
normal  

Emitted electrons and 
protons



Electron 
Spectrometers

Proton 
Spectrometer

Discrete Proton 
Spectrometer

Target
NRE/MP Seminar 
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Electron temperatures were found to exceed the 
ponderomotive scaling and are dependent on pulse length 

20.9 ps 
11.2 ps 

2.9 ps 

0.8 ps 

Electron Measurements
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Wilks Ponderomotive Scaling 

[6] S. C. Wilks, et al., PRL. 69 (1992)

20.9 ps 
11.2 ps 

2.9 ps 

0.8 ps 

Electron MeasurementsElectron temperatures were found to exceed the 
ponderomotive scaling and are dependent on pulse length 
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Wilks Ponderomotive Scaling 

[6] S. C. Wilks, et al., PRL. 69 (1992)

[7] Haines, et al., PRL. 102, 045008 (2009) 

Beg Scaling
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Wilks Ponderomotive Scaling 

20.9 ps 
11.2 ps 

2.9 ps 

Beg Scaling

Pukhov Scaling

[6] S. C. Wilks, et al., PRL. 69 (1992)

[7] Haines, et al., PRL. 102, 045008 (2009) 

[8] Pukhov, et al., PoP. 6,7 (1999) 

0.8 ps 

[9] A.Kemp & S. Wilks, PoP 27, 103106 (2020)

Electron MeasurementsElectron temperatures were found to exceed the 
ponderomotive scaling and are dependent on pulse length 
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The relationship between laser intensity and maximum 
proton energy in multi-ps regime was also measured

Proton Measurement
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Fuchs Model

The Fuchs model does not capture the relationship 
between intensity and proton energy in this regime

Proton Measurement
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A new scaling model was used that better captures the 
relationship between intensity and max proton energy in this study

Modified Fuchs  
Model [11]

[11] Rusby, PhD Thesis (2017)

Fuchs Model

Proton Measurement
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The modified model uses Brenner et al. description for 
the acceleration time and enhances the hot electron temperature 

Fuchs Scaling for Max Proton Energy

[2] J. Fuchs et al., Nat. Phys. 2.1 (2006)

[3] S. C. Wilks, et al., PRL. 69 (1992)

Ponderomotive Scaling for Electron Temperature

Proton Measurement

[11] Rusby, PhD Thesis (2017)
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Fuchs Scaling for Max Proton Energy

[12] C. Brenner et al. PPCF 56,8 (2014)

Ponderomotive Scaling for Electron Temperature

[3] S. C. Wilks, et al., PRL. 69 (1992)

Proton Measurement

[11] Rusby, PhD Thesis (2017)

The modified model uses Brenner et al. description for 
the acceleration time and enhances the hot electron temperature 
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This new scaling has been key in development of laser-
driven proton and neutron sources on the NIF-ARC facility

New Scaling

R. Simpson et al. PoP (2021)  
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This new scaling has been key in development of laser-
driven proton and neutron sources on the NIF-ARC facility

New Scaling

Scaling studies are important, but have limitations

R. Simpson et al. PoP (2021)  



Summary

”Smart” Laser-Driven Sources – Using machine 
learning based tools for control, inference and 
physics understanding of laser-driven sources  

My research focuses on building new frameworks for 
understanding and ultimately controlling these complex systems
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BackgroundHigh-repetition rate laser systems are coming on-line around the 
world can accelerate the rate of learning in laser-plasma research
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High repetition-rate (HRR) lasers represent a major paradigm shift in laser technology 

47



Research in laser-matter interactions are moving towards an 
integrated approach

HRR 



ML-Enabled Data 
Analysis

HRR Research in laser-matter interactions are moving towards an 
integrated approach



Future Work

5050

Understanding the dynamic of the accelerating field will be 
crucial for a generalized model for laser-driven particle acceleration

The central goal of this future work is to directly relates the time-dependent physics of the sheath field
and its properties, like its strength and spatial profile, to characteristics of the accelerated particles.



SummaryMy research focuses on building new frameworks for 
understanding and ultimately controlling these complex systems

51

These research thrusts represent 
foundational steps towards 

predictable laser-driven particle 
acceleration



Thank you to Krell, the LRGF Program and everyone that makes 
this community possible !
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