Strengthening Trends of Nanovoid Irradiation Defects with Meso-Scale PFDD Modelling

Ashley Roach^{1*}, Shuozhi Xu², D.J. Luscher³, Daniel Gianola¹, Irene Beyerlein^{1,4}

¹Materials Department, UC Santa Barbara

²School of Aerospace and Mechanical Engineering, University of Oklahoma

³Theoretical Division, Los Alamos National Lab (LANL)

⁴Department of Mechanical Engineering, UC Santa Barbara

Outline

Nanovoid Strengthening Literature Simulation Approach with PFDD

Nanovoid Strengthening Trends

Dominant Mechanisms

Motivation: Irradiated Materials

3

RGF

Nanovoids Contribute to Irradiation Strengthening

Irradiation Results in Very High Localized Defect Density

Wang D. et al., 2022. Journal of Nuclear Materials 569 153940

Lucas G., 1993. Journal of Nuclear Materials 206 287-305

Precipitate Hardening Analog

Weak Obstacle

Influence Extends Beyond Irradiation Damage

Nanovoids Also Exist in Ductile Metals More Broadly...

Noell P. et al., 2020. Acta Mater. 184 211-224

RGF

Nanovoid Strengthening Literature

6

RGF

Crash Course on Dislocation Mechanics

Model System Analogous to Precipitate Hardening

Crone, Munday, and Knap, 2015

Obstacle: D, S, \overline{D} Material: b, μ

Scattergood R., Bacon D., 1982. Phil. Mag. 31 179-198

Crone J., Munday L., Knap J., 2015. Acta Mater. 101 40-47

Analytical Model Gives Complicated Strengthening Relationships

GF

What About Dissociation in FCC Metals?

Separate Net Displacement into Partial Dislocation Steps

Add Energetic Penalty with the Stacking Fault

Change Dislocation Character for Each Partial

Lower Line Tension for Each Partial

Dislocation Dissociation Alters the Fundamentals

Stacking Fault Width (SFW)

If Partials Act Together:

Total Force Balance Remains Consistent \checkmark

If Partials Act Sequentially:

Total Force Balance Changes (!)

Larger SFW Materials ↓ Higher Likelihood of Sequential Shearing

Extension to Partials in FCC and Atomistics

12

GF

Size and Material Sensitivities are Expected

Asari K. et al., 2013. J. Nuclear Materials 442 360-364 Doihara K. et al., 2018. Phil. Mag. 98 2061-2076 Simar A., Voigt H.J.L., Wirth B.D., 2011. Comp. Material Sci. 50 1811-1817 Osetsky Y., Bacon D., 2010. Phil. Mag. 90 945-961

13

GF

Additional Modeling Techniques Are Needed

Molecular Dynamics (MD)		Desired Metrics
Small Void and Cell Sizes	X	Relevant Length Scales
Shock Loading	\times	Relevant Time Scales
Limited Reliable Interatomic Potentials	X	Full Material Variability

Nanovoid strengthening in FCC still has unanswered questions...

Phase Field Dislocation Dynamics (PFDD)

<u>Energetic Framework</u>: Evolve order parameters and minimize system energy using Time Dependent Ginzburg Landau (TDGL) Equation

Xu S. et al., 2022. Comput. Meth. Appl. Mech. Eng. 389 114426

Gamma Surface Enables Physics-Driven Dislocation Evolution

Energetic Penalty to Dislocation Motion

PFDD Expands our Investigative Abilities for this Problem

Simulation Approach: Phase Field Dislocation Dynamics (PFDD)

RGF

Simulation Cell Design for Voids in PFDD

Simulation Cell Design for Voids in PFDD

GF

Material Inputs Consider All Properties

20

Void Geometries Span Characteristic Lengths

GF

Results: Nanovoid Strengthening Trends

22

RGF

Strong Dependence on Linear Void Fraction

Remarkable collapse to single curve for τ_c/μ versus F

no higher order D or S dependence

Strong μ dependence

ISFE/USFE is a Dominant Property

GF

ISFE/USFE is a Dominant Property

Obstacle Strength Trends Shift from Literature

Strengthening Dependence from Literature

$$\frac{\tau_c}{\mu} = \frac{b}{2\pi L_{effective}} \ln(S * F)$$

Logarithmic dependence on void geometry

Additional dependence on characteristic length at max bowing

Higher order void geometry dependence than F alone captures

Our LF Model

$$\frac{\tau_c}{\mu} = (M)F$$

Linear dependence on void geometry

$$\frac{\tau_c}{\mu} = \alpha \left(\frac{ISFE}{USFE} + \beta \right) F$$

Empirical slope dependent ONLY on material properties

Relevance of Our LF Model in FCC Due to Dissociation

Asari K. et al., 2013. J. Nuclear Materials 442 360-364

Takeaways from Nanovoid Strengthening with PFDD

