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Particle acceleration in astrophysical and laboratory plasmas
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Gamma-ray bursts: the most powerful explosions in the universe

Particle collisions are rare; plasmas interact
via self-generated electromagnetic fields
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Plasma waves are too small to observe directly. We need to
use simulations to understand their behavior.
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Laboratory studies of GRB conditions are now possible

Linear accelerators
(SLAC FACET-Il)
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Requirements to observe instability:

* Spotsize g, » ¢/w, (10s um —mms)
* Beam duration g, = um

+ Targetlength L = 100s um

» Total charge = nC

We need to understand the impact of finite
beam size
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Finite-size beams can probe plasma instabilities
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Weibel instability can mediate intense x-ray emission

Laser-driven e-beams could enable compact x-ray source

LWFA gas jet Denser gas jet Unprecedented 100+ keV flux possible
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Laser-driven ions are urgently needed in several fields

Fusion Energy Science Accelerator Physics Materials Science

* Radiography of quickly- * Hybrid accelerator * lon damage studies
evolving phenomena development * Next-generation fusion

* lon stopping power *  Compact cancer care facilities material development
measurements
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Magnetic vortex acceleration scheme promises high ion energies

(102 /cm3) (1021 /cm3)
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No experiment has conclusively
observed magnetic vortex acceleration.
» Targets are difficult to manufacture
» Electromagnetic fields are too strong

and short-lived to see

Lawrence Livermore National Laboratory
Peterson-2023.ppt — J. Ryan Peterson — SSGF/LRGF Program Review — June 29, 2023

AT

National Nuclear Security Administration



Low-density gas jets allow us to study magnetic vortex
formation with larger, longer-lasting fields

Radiochromatic film

Lower energies arrive later,
providing time series

Gas jet density profile
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Proton radiography captures field evolution over 10s of
picoseconds

B field

energetic
electrons

Pre-shot (~40 MeV)

2 mm-wide magnetic vortex

17 MeV
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Simulations qualitatively reproduce behavior from experiments
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Simulations show caustic structures related to sheath E-field
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Electric field directly couples magnetic pressure to the ions:

2
QXE= :—n X A (for wall area A and charge Q)

2w,meC
B = /Ex—pe -

As long as B > E, this reduces to
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We analytically calculate electric field caustic threshold
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Inferred magnetic fields agree well with theoretical expectations
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Conclusions

0.03

« High-current laboratory electron beams can drive and study
plasma instabilities relevant to gamma-ray bursts

y (c/wp)
np (no)

0.00

* Plasma instabilities can enable bright, energetic compact x-
ray sources X (clwyp) X (c/wp) X (c/wp)

+ Studying laser-plasma interaction at low densities enables
clear measurements of the electromagnetic field evolution

» We report the first measurement of the magnetic fields in a
laser-driven magnetic vortex and confirm that it agrees well
with theory
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