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Particle acceleration in astrophysical and laboratory plasmas

Cassiopeia A
NASA/CXC/SAO
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Gamma-ray bursts: the most powerful explosions in the universe

NASA Goddard Space Flight Center

Particles emit intense x-ray and 𝛾-ray 

synchrotron radiation in self-generated fields
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Particle collisions are rare; plasmas interact 

via self-generated electromagnetic fields
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Plasma waves are too small to observe directly. We need to 

use simulations to understand their behavior.



5
Peterson-2023.ppt – J. Ryan Peterson – SSGF/LRGF Program Review – June 29, 2023

Laboratory studies of GRB conditions are now possible

Requirements to observe instability:

• Spot size 𝜎⊥ ≫ 𝑐/𝜔𝑝 (10s 𝜇m – mms)

• Beam duration 𝜎𝑧 ≳ 𝜇m
• Target length 𝐿 ≳ 100s 𝜇m
• Total charge ≳ nC

High-power 

lasers

(OMEGA-EP)

Linear accelerators 

(SLAC FACET-II)

Relativistic e-beam Gas jet

𝜎𝑧

𝜎⊥

Density 𝑛𝑒 ≫ 𝑛𝑏

Density 𝑛𝑏

𝐿

We need to understand the impact of finite 

beam size
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Finite-size beams can probe plasma instabilities

Electron beam shape needs to satisfy

𝜎⊥ ≳ 10
𝑐

𝜔𝑝𝜎𝑥
 

𝑐

𝜔𝑝

for plasma instabiltiies to outrun self-focusing

Growth rate depends on duration: Γ ∝ 𝜎𝑧

[Claveria, Davoine, Peterson et al., PRR 4, 023085 (2022)]

[Keinigs and Jones. PhFl 30:252, 1987]

Beam width and duration affect self-focusing

Narrow beam

Weibel/filamentation 

instability

Wide beam

OTSI (oblique) 

instability

Beam duration affects instability growth rate
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Weibel instability can mediate intense x-ray emission

Unprecedented 100+ keV flux possible

Benedetti et al., Nat. Phot. 12, 319 (2018) 

e-

beam

Denser gas jetLWFA gas jet

x-rays

PW, fs laser

Laser-driven e-beams could enable compact x-ray source

Simulations predict nearly-collimated x-rays

Adapted from Lemos et al., 

Phys. Plasmas 26, 083110 (2019)

Weibel regime simulations 

(3 nC, 1 GeV)

Beam profile at 𝑐𝑡 = 5 mm

Gas jet Gas jet
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Laser-driven ions are urgently needed in several fields

• Hybrid accelerator 
development

• Compact cancer care facilities

• Radiography of quickly-
evolving phenomena

• Ion stopping power 
measurements

• Ion damage studies
• Next-generation fusion 

material development 

Fusion Energy Science Materials ScienceAccelerator Physics
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Magnetic vortex acceleration scheme promises high ion energies

Park et al., POP 103108 (2019)

Nakamura et al., PRL 105, 135002 (2010)

laser ions

1021/cm3

Ion density

1021/cm3

Electron density

Electric field 𝐸𝑧Magnetic field 𝐵𝑦

No experiment has conclusively 

observed magnetic vortex acceleration.

• Targets are difficult to manufacture

• Electromagnetic fields are too strong 

and short-lived to see
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Low-density gas jets allow us to study magnetic vortex 
formation with larger, longer-lasting fields

He gas

Electron 

density ∼
1019 cm−3

1 ps, 110 J

OMEGA-EP laser

Gas jet nozzle

Au foil

1 ps, 300 J

laser

𝜇𝐶 electron beam

energies up to 100 MeV

Radiochromatic film

Lower energies arrive later, 

providing time series

Gas jet density profile
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Proton radiography captures field evolution over 10s of 
picoseconds

𝑡0 = 0 ps

𝑡2 𝑡3 = 50 ps
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B field

2 mm-wide magnetic vortex
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Simulations qualitatively reproduce behavior from experiments
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Simulations show caustic structures related to sheath E-field

Experimental radiograph

Simulated radiograph
𝑥 (𝜇m) 𝑥 (𝜇m) 𝑥 (𝜇m)

𝑦
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𝜇
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)
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Electric field directly couples magnetic pressure to the ions:

𝑄 × 𝐸 =
𝐵2

8𝜋
× 𝐴   (for wall area 𝐴 and charge 𝑄)

As long as 𝐵 > 𝐸, this reduces to 𝐵 = 𝐸 ×
2𝜔𝑝𝑚𝑒𝑐

𝑒
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We analytically calculate electric field caustic threshold

With cylindrical symmetry, caustics form when

[Kuland et al., Rev. Sci. Instrum. 83, 101301 (2012)]
𝑑𝑟𝑖

𝑑𝑟0
= 0,

where

𝑟𝑖 = 𝐿
𝑟𝑜

𝑙
+ 𝛼 𝑟0 ,  𝛼 𝑟0 = −

𝑒𝑟0

𝑊
න

𝑟0

∞ 𝑑𝑟′

𝑟′2 − 𝑟0
2

𝐸𝑟 𝑟′

caustic

No caustic

𝑅

𝑤

𝑤

𝑟/𝑅

Approximate electric field as a gaussian ring

Caustic formation threshold for 40 MeV protons
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Inferred magnetic fields agree well with theoretical expectations

𝑅 ∼ 1.1 mm

𝑤 ∼ 𝑐/𝜔𝑝

Radiograph indicates 

~120 kG fields at end of jet

Theory Electron spectrum

Peak 

current

𝐼 ∼ 𝑒𝑐𝑛𝑒𝜋𝑅𝑙𝑎𝑠𝑒𝑟
2 ∼ 97 kA 70 nC in 1 ps ∼ 70 kA

Peak B
𝐵 ∼

2𝐼

𝑅𝑐
∼ 167 kG

𝐵 ∼ 120 kG

Field strength calculated from radiographs agrees 

with theory and the measured electron spectrum
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Conclusions

• High-current laboratory electron beams can drive and study 

plasma instabilities relevant to gamma-ray bursts

• Plasma instabilities can enable bright, energetic compact x-

ray sources

• Studying laser-plasma interaction at low densities enables 

clear measurements of the electromagnetic field evolution

• We report the first measurement of the magnetic fields in a 

laser-driven magnetic vortex and confirm that it agrees well 

with theory
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