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Plasmas span a range of temperature and densities
 High-energy, ionized state of matter

 extreme pressures, temperatures, 
densities

 Locally-generated EM fields, 
 Global-collective particle behavior,
 Hydrodynamic properties
 Highly Radiative

 Conditions categorize type of plasma
 “Cold”, nonthermal 
 “Warm”, dense 
 “Hot”, thermal

Image Credit: Los Alamos National Laboratory (https://www.lanl.gov/projects/dense-plasma-theory/background/physical-regimes.php) 3

Can mix in 
HED plasmas

https://www.lanl.gov/projects/dense-plasma-theory/background/physical-regimes.php


Plasma processes come in two primary flavors
 Thermal (“hot” line emission)

 Multiply ionized (high internal energy) ions
 Maxwellian (isotropic) particle energy 

distribution
 Ions & electrons = same temperature
 Thermal radiation (“ionic”)

 Nonthermal (“cold” line emission)
 Weakly ionized (low internal energy) ions

 Non-Maxwellian particle distribution

 Different ion & electron temperatures

 Nonthermal radiation (“characteristic”)

1D. J. Ampleford et al., Sandia report SAND2015-10453 (2015)    2M. Uo et al. Jap. Den. Sci. Rev. (2014) 4

Illustration of the kinetics of (a) thermal Heα emission 
and (b) non-thermal Kα emission1

Illustration of nonthermal K-shell relaxation process 
& spectral line profile2



Nonthermal radiation valuable for assessing 
conditions of cooler regions of capsule implosions

 Nonthermal x-ray spectroscopy is 
significant for stockpile stewardship 
missions related to ICF, HED x-ray studies, 
etc.

 Nonthermal x-rays can provide insight to 
capsule preheat from nonthermal electrons

 Mid-Z impurities in various capsule 
design can provide diagnostic fiducials for 
constraining temperature, density, etc.

Image: Zylstra, A.B., Hurricane, O.A., Callahan, D.A. et al. Burning plasma achieved in inertial fusion. Nature 601, 542–548 (2022). https://doi.org/10.1038/s41586-021-04281-w 5
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Goal: Perform a comprehensive investigation on the 
influence of nonthermal effects on x-ray radiation in 
laboratory plasmas, with an emphasis on production 
efficiency and origin. 



Z-pinches produce magnetically-confined HED plasma sources 
with high x-ray yield

1E. Ruskov et al., Physics of Plasmas 27, 042709 (2020) 2V. L. Kantsyrev et al., Phys. of Plasma, 15, 030704 (2008) 3R. R. Childers et al., IEEE Trans Plasma Sci. 46: 3820 (2018) 6
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Plasma is created by sublimating solid material 
through rapid heating (ohmic or laser).

1. Electric potential created across electrode gap

2. Current is pulsed through pathway medium 
 Wires, Foil, Gas, etc

3. Azimuthal magnetic field created about current 
carrying wires, confining material

4.  𝐽𝐽 × 𝐵𝐵 Lorentz force acts radially to pinch material 
towards pinch axis

Schematic cartoon of Z-pinch plasma production process

Fuel-filled cylindrical liner1Pre pulsed wire x-pinch3
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Bright spot 
clusters 

(x-ray image)Bright spot production
• Dense (≳1018 cm-3)
• High temperature (≳ 1 keV) plasma
• Bursts of x-ray emission (x-ray bursts)
• Production of hot, nonthermal electrons
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X-pinch experiments are performed on the pulsed-power 1 
MA Zebra Generator at UNR

 2 TW pulsed power generator (∼1 MA current)
 Current rise time: 100 ns

 Total energy: 150 kJ

 Housed at University of Nevada, Reno (UNR)1,2

1B. S. Bauer et al., 12th IEEE Int. Pulsed Power Conf. Dig. Tech. Papers 2, 1045 (1999)  2V. L. Kantsyrev et al., Phys. Plasmas, 10, 2519-2526 (2003) 8



X-pinch wire load geometry varied to study influence 
on K-shell radiation and bright spot production1

 Stainless steel (69% Fe, 20% Cr, 9% Ni) wire loads 

 31° or 62.5° interwire angle

 4 wires, 40 μm diameter, 830 μg total mass

 Bright spots (> 3 keV) measured to determine 
size and quantity

 Diagnostic signals analyzed to characterize x-ray 
emission properties of bright spot sources

 Time-integrated x-ray Fe-Cr-Ni spectra are 
analyzed using non-LTE CRM.

1R.R. Childers et al., JQSRT, 303, 108586 (2023) 2V. L. Kantsyrev et al., Phys. Plasmas, 10, 2519-2526 (2003) 9

Zebra Shot # Interwire Angle Current [MA] Rad Yield [kJ]

1588 31° 0.91 16.7

1589 62.5° 0.94 14.6

1590 31° 0.92 17.1

1591 31° 0.92 15.5

1592 62.5° 0.93 11.3

2 cm

X-pinch load in Zebra2

Interwire 
angle

62.5° 31°

Shadowgrams of X-pinch wire loads
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Goal: Investigate how to efficiently generate intense 
thermal and nonthermal x-ray radiative signatures in a 
single X-pinch plasma, with an emphasis on nonthermal 
electron production.  



FWHM analysis performed on x-ray emitting source size

R.R. Childers et al., JQSRT, 303, 108586 (2023) 10
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FWHM analysis performed on x-ray emitting source size
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c

Bright Spot Spatial Analysis

hν > 3kev

Axial

Radial

hν > 
3kev

hν > 3kev

62.5°
• Single, larger bright spots at cross 

point (≥ 1.0 mm2)

31°
• Multiple smaller bright spots along 

pinch axis (≤ 0.5 mm2)

Geometry
Zebra 

Shot

Bright 

Spots

FWHM

Axial ± σA 

[μm]

Radial ± σR 

[μm]

Area ± σAr 

[mm2]

Small-

angle

1588 2 535 ± 216 417 ± 137 0.25 ± 0.13

1590 3 519 ± 324 663 ± 443 0.46 ± 0.43

1591 3 561 ± 245 578 ± 151 0.35 ± 0.18

Large-

angle

1589 1 937 ± 187 1280 ± 314 1.16 ± 0.37

1592 1 920 ± 498 1080 ± 313 0.98 ± 0.60

Time-averaged spatial measurement results



FWHM analysis performed on time-resolved x-ray diode signals 

R.R. Childers et al., JQSRT, 303, 108586 (2023) 11



FWHM analysis performed on time-resolved x-ray diode signals 

R.R. Childers et al., JQSRT, 303, 108586 (2023) 11
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FWHM analysis performed on time-resolved x-ray diode signals 

R.R. Childers et al., JQSRT, 303, 108586 (2023) 11

62.5°
• Dynamic soft x-ray (> 3 keV keV) 

signal

• Radiation yields ≤ 14.6 kJ

• Source size varies proportionally 
with current

31°
• Notable hard x-ray (> 9 keV) 

signal dynamics 

• Radiation yields ≥ 15.5 kJ

• Source size decreases with 
increasing current (more 
pinching)



Synthetic modeling reveals distinct x-ray radiative 
properties for each X-pinch geometry

R.R. Childers et al., JQSRT, 303, 108586 (2023) 12

• Nonthermal “cold” plasma region:
• 𝑇𝑇𝑒𝑒 ≤ 50 eV,𝑛𝑛𝑒𝑒~1018 cm−3 
• Fe, Cr, & Ni ions of Ne-like & lower

31° 62.5°
f ~ 0.5% f ~ 0.1%
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Results*

By decreasing the interwire angle, we have successfully:

• Increased x-ray radiation yield
• Increased production of hot K-shell plasmas with intense 

nonthermal K-shell emission features
• Enhanced generation of satellite lines from highly charged ions 

(valuable for nonthermal e-beam diagnostics)
• Produced smaller radiating sources by reducing bright spot size 

for  > 3 keV energies

*R.R. Childers et al., “K-shell radiation and bright spot characteristics of high-energy-density Fe-Cr-Ni 
plasmas influenced by X-pinch load geometry”, J. Quant. Spectrosc. Radiat. Transfer, 303, 108586 (2023)
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Radiation transport is investigated in a dense MagLIF 
plasma using a novel Monte Carlo post-processor

1M. R. Gomez et al., Phys. Plasmas, 22, 056306 (2015) 2K.D. Hahn et al., J. Phys: Conf. Series 717:012020 (2016) 3S. B. Hansen et al., Phys. Plasmas, 25, 056301 (2018) 14

 X-ray fluorescence studied in MagLIF plasmas on 
Z.

MagLIF1 produced by 
 2.5 kJ laser preheat of fusion core
 Implosion by current-driven axial magnetic flux
 Z-pinch compression to inertially confine fusion core

 Two new computational packages developed:
 A screened-hydrogenic atomic data package 
 A novel Monte Carlo Radiation Transport code

Monte Carlo Rad transport utility = spatial analysis 
of nonthermal particle origin

Fluorescence process3

MagLIF Scheme2MagLIF Scheme2

Fluorescence process3
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Goal: Explore spatial origins of nonthermal fluorescence 
production in a dense MagLIF liner plasma shell. 



A newly constructed computational package uses Monte Carlo and screened-
hydrogenic-atom schemes to post-process radiation transport in MagLIF 

Source 
radiation
Generate 

MCPs

Iterate 
through 
binned 
packets 

Seed origin 
of MCP

Calculate:
-Cross 
section 

-opacity
-mean free 
path (MFP)

Track MCP 
through 
medium

Continuous 
random 

walk 
process

MCP scatters
Randomly seeded isotropic 

direction & MFP

MCP escapes
Track location

Calculate 
emergent 
spectrum

MCP Absorbed
According to 
relative cross 

section 
probability

Be
energy 

deposition 
Fe ionization

Fe
K, L, M Shell 

ionization

K-shell
Kα, Kβ 

emission

L-shell
Lα, Lβ 

emissionMCP Bypass
No interaction

Continues to next site
15

Monte Carlo 
Particle (MCP) – 
computational 
pseudo-particle



Computational Atomic Data Package

Employs screened-hydrogenic, super-config 
treatment of atomic structure to calculate:

Radiation Field

o Defined by emissivity of thermal core 
radiator:

𝑗𝑗𝑓𝑓→𝑓𝑓
𝑊𝑊

𝑒𝑒𝑒𝑒 � 𝑐𝑐𝑚𝑚3 =
2 × 10−32𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑒𝑒𝑍𝑍2

𝑇𝑇𝑒𝑒
𝑒𝑒
ℎ𝑣𝑣
𝑇𝑇𝑒𝑒

o Input variables:
o ne = nion= 1023 cm-3

o Z ~ 1 (core nearly pure 
hydrogen)

o Te, hv, Δhv, radius, height

o Radiation field discretized:
o binned energies (Δhv), 

emissivity, and # photons 
o “Monte Carlo Particle (MCP)”

Radiation transport kinetics defined by core radiation field and 
screened-hydrogenic atomic data package

 Statistical Weights

 Energy levels

 Binding Energies

 Transition 
Energies

 Screening Factors

 Oscillator 
Strengths

 Radiative Decay 
Rates

 Individual 
Autoionization 
Rates

 Total 
Autoionization 
Rates

 Fluorescence 
Yield

 Photoionization 
cross section

 Gaunt-corrected 
photoionization 
cross sections

 Collisional 
Ionization

 Collisional 
excitation

R.R. Childers et al., Contributed Talk, Division of Plasma Physics, Oct. 17, 2022, Spokane, WA 16

Monte Carlo Application: 

o Seeding particle 
origins 

o Randomized mean 
free path (in units of 
energy-dependent 
attenuation length) 

o Selection of interaction 
event (cross section 
probabilities) 

o Isotropic Scattering 



Code tracks MCP trajectory and interaction events
Radiation Field
 Cylindrical core 

 100 μm radius

 1 cm height

 2.7 keV thermal temperature

 100 eV – 31,000 eV range w/ 1 
eV resolution

 Plasma Medium
 500 μm shell radius 

 15 g/cc Be (∼1.03 x 1024 ion/cc)

 114 ppm Fe (1.1426 x 1020 ion/cc)

 Baseline ionization: 
 Fe <Z> ~ 3-5

 Be <Z> ~ 2

1S. B. Hansen et al., Phys. Plasmas, 25, 056301 (2018) 2R.R. Childers et al., Contributed Talk, Division of Plasma Physics, Oct. 17, 2022, Spokane, WA 17
Calculated Te shows good agreement with MagLIF liner Te: ~10 eV1,2
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Code independently tracks nonthermal K-shell emission

R.R. Childers et al., Contributed Talk, Division of Plasma Physics, Oct. 17, 2022, Spokane, WA 18

Spatial statistics 
performed on K-
shell photon 
origin

Calculations 
suggest a region of 
production 
averaging 264 μm 
from pinch axis 
with a broad 
spatial 
distribution 

 (σ ~ 107 μm) 



Code independently tracks nonthermal K-shell emission
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‘+’ are 
points of 
creation in 
medium

Spatial distribution of Kα origin 
projected onto each 2D plane

Spatial statistics 
performed on K-
shell photon 
origin

Calculations 
suggest a region of 
production 
averaging 264 μm 
from pinch axis 
with a broad 
spatial 
distribution 

 (σ ~ 107 μm) 



Code calculates emergent transmission spectrum with 
escaped Fe fluorescence

19

Fe Kα/Kβ show good agreement with Z XRSSS data (provided 
courtesy of Drs. Eric Harding via Stephanie Hansen)

Radial temp. profile = strong energy deposition 
nearest thermal core  Plasma temp. gradients

Line Energies:

1) SH atomic 
data package 
(less 
accurate)

2) Linked 
database to 
FAC 
calculated 
transition 
energies, 
config-
averaged

Temperature 
from deposition 
of thermal core

Temperature from 
absorption of Kα photons

Temperature from 
absorption of Kβ photons



Code calculates emergent transmission spectrum with 
escaped Fe fluorescence

19

Fe Kα/Kβ show good agreement with Z XRSSS data (provided 
courtesy of Drs. Eric Harding via Stephanie Hansen)

Radial temp. profile = strong energy deposition 
nearest thermal core  Plasma temp. gradients

Line Energies:

1) SH atomic 
data package 
(less 
accurate)

2) Linked 
database to 
FAC 
calculated 
transition 
energies, 
config-
averaged

Temperature 
from deposition 
of thermal core

Temperature from 
absorption of Kα photons

Temperature from 
absorption of Kβ photons

Results

Successfully developed and implemented a novel Monte Carlo 
Radiation Transport code explore spatial origins on nonthermal Fe 
K-shell fluorescence:

Production over a broad region (~107 μm) averaging ~264 μm 
from the pinch axis.
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