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Summary
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1. Shock waves occur in a wide range of engineering and scientific contexts including laser 
experiments, astrophysics, and inertial confinement fusion (ICF).

2. High-powered lasers can drive strong waves in materials, enabling their study in extreme 
pressure environments. We developed a method for further strengthening such shocks.

3. Shocked interfaces mix via the Richtmyer-Meshkov instability (RMI), possibly leading to the 
escape of high-vorticity ejecta with important implications for turbulent transitions.
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Shock waves occur in a variety of engineering and natural contexts where 
they interact with fluid interfaces. 
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Dynamic compression experiments utilize lasers to generate shocks that 
compress materials to extreme pressures in a nominally 1D system.
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Dynamic compression experiments utilize lasers to generate shocks that 
compress materials to extreme pressures in a nominally 1D system.
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Dynamic compression experiments utilize lasers to generate shocks that 
compress materials to extreme pressures in a nominally 1D system.
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Dynamic compression experiments utilize lasers to generate shocks that 
compress materials to extreme pressures in a nominally 1D system.
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Dynamic compression experiments utilize lasers to generate shocks that 
compress materials to extreme pressures in a nominally 1D system.
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An intermediate material bridging an impedance discontinuity can 
transiently strengthen a shock wave in a material of interest.
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An intermediate material bridging an impedance discontinuity can 
transiently strengthen a shock wave in a material of interest.
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A single intermediate material can increase pressures by up to 16%, as 
verified by HYADES simulations utilizing tabular equations of state.
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Linear theory and nonlinear models predict the width of the mixing layer for 
multimode interfaces, with an eventual handoff to turbulence models.

Linear theory Nonlinear models
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The transition to turbulence of the RMI is not well understood and involves 
several complicating transport mechanisms.
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In addition to the RMI, shocked interfaces can generate jet/ejecta flows with 
important applications in ICF, ejecta physics, and astrophysical jets.
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Classical studies focus on vortex rings generated in a piston-cylinder 
apparatus and have uncovered key insights into their scaling behavior.
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The formation number is based on analysis comparing the amount of energy 
supplied by the piston to the energy that can reside in the ring.
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We modify the classical theory for vortex ring scaling by considering the 
strength of the shock and the interfacial Atwood number.
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Simulations verify that our model captures the augmented formation number 
scaling of vortex rings ejected from shock-accelerated interfaces.
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