Interpenetration and Kinetic Mix in Weakly Collisional, Fully-ionized Plasma Jets

Will Riedel

Stanford Plasma Physics Laboratory Department of Mechanical Engineering Stanford University

June 22, 2022

Coulomb collisions play an important role in the interaction of unmagnetized, fully ionized plasma jets

- Collisionless ($\lambda_{mfp} >> L$)
- Intermediate $(\lambda_{mfp} \sim L)$

We use "inverted corona" targets to study converging plasma jets

Gas-filled target X-ray emission Image: transform of tr

We use "inverted corona" targets to study converging plasma jets

Gas-filled target X-ray emission Image: transform of tr

We use "inverted corona" targets to study converging plasma jets

Gas-filled target X-ray emission Image: transform of tr

The fluid approximation

The fluid approximation

• If collisions are rapid, plasma can be assumed in local thermodynamic equilibrium

The kinetic (particle-in-cell) approach

• Treat plasma as collection of macroparticles that sample VDF

The kinetic (particle-in-cell) approach

• Treat plasma as collection of macroparticles that sample VDF

- Here we use hybrid-PIC code Chicago¹:
 - Kinetic ions, massless fluid electrons
 - Includes laser ray-tracing package and binary fusion algorithm
 - Primarily focusing on 1D

[1] C. Thoma et al., Phys. Plasmas 24, 062707 (2017).

Fusion neutrons as a diagnostic

- Colliding atoms can undergo nuclear fusion reactions
- Can measure neutrons produced
- Use plastic for shell material:
 - Non-reactive hydrogen plastic (CH)
 - Deuterated plastic (CD)

We include fill-gas to increase yield and study gas-shell interaction

• Comparing neutron yield between targets with/without deuterated liners provides insight into mix

We include fill-gas to increase yield and study gas-shell interaction

• Comparing neutron yield between targets with/without deuterated liners provides insight into mix

We include fill-gas to increase yield and study gas-shell interaction

• Comparing neutron yield between targets with/without deuterated liners provides insight into mix

Density contours show wide mix region at lower fill pressure

Density contours show wide mix region at lower fill pressure

Phase-space diagrams

• A vertical lineout of the plot shows the VDF of the plasma at that position in space

Phase-space diagrams

• A vertical lineout of the plot shows the VDF of the plasma at that position in space

There is significant non-Maxwellian behavior at gas-shell interface

Gas-shell mix reduces yield for targets with non-reactive shell

- Experimental data matches simulated pressure scaling well
- Suggests 1D kinetic treatment is sufficient to capture mix process

<u>Note</u>: all simulations scaled down by a factor of 6.5 (to match experimental and Chicago yields for CHs at 0.34 mg/cc)

We extend simulations to 2D to investigate shape effects

• No significant yield degradation with single-sided illumination

Synthetic x-ray images show good agreement with experiment

Relative yield scaling is still reproduced

- Yield is reduced by ~2X when modeled in 2D (still overpredicting by ~3X)
- Relative yield behavior is consistent

lized Neutron Yield	- 10 ⁰ -	
Norma	-	0.2

Note: all simulations normalized to the value of a CH liner target at 0.3 mg/cc

Conclusions

- Fluid approximation breaks down in certain regimes of ICF
- Consequences of interpenetration and mix can be observed experimentally
- approach

• Kinetic-ion simulations can predict observed plasma behavior more accurately than typical fluid

Acknowledgments

- Mark Cappelli
- Nathan Meezan
- Drew Higginson
- Matthias Hohenberger

