Probing a hydrous iron-sulfate within extreme planetary environments

Olivia Pardo

Vasilije V. Dobrosavljevic, Tyler Perez, Wolfgang Sturhahn, Zhenxian Liu, George R. Rossman, Jennifer M. Jackson

Iron sulfates in planetary environments

Measuring geophysical and geochemical properties of iron sulfates

Behavior of FeSO₄·H₂O under extreme pressure and cryogenic temperatures

SSGF reflection

DOE NNSA SSGF Annual Meeting 2022

Sulfur in planetary environments throughout the solar system

Sulfur in planetary environments throughout the solar system

- and iron oxides layers
- MgSO₄·H₂O spectrally identified

DOE NNSA SSGF Annual Meeting 2022

Sulfur in planetary environments throughout the solar system

Earth

- Laboratory measurements aim to identify sulfate-ice mixtures that match observations
- Candidate sulfates: $H_2SO_4 \cdot 8H_2O$ $MgSO_4 \cdot 6H_2O$ $Na_2Mg(SO_4)_2 \cdot 4H_2O$ $Na_2SO_4 \cdot 10H_2O$ $(Fe,Mg)SO_4 \cdot nH_2O$

What role do sulfates play at depth?

Iron sulfates in planetary environments

Measuring geophysical and geochemical properties of iron sulfates

Behavior of FeSO₄·H₂O under extreme pressure and cryogenic temperatures

SSGF reflection

DOE NNSA SSGF Annual Meeting 2022

Measuring geophysical and geochemical properties of hydrated sulfates

- What role do hydrous sulfates play at depth? 1.
- 2.
- 3. How does Fe affect the properties of hydrated sulfates? $FeSO_4 \cdot H_2O$

What are their stabilities at non-ambient conditions, and can they retain molecular water?

Measuring geophysical and geochemical properties of hydrated sulfates

1. What role do hydrous sulfates play at depth? What are their stabilities at non-ambient conditions, and can they retain molecular water? 3. How does Fe affect the properties of hydrated sulfates? $FeSO_4 \cdot H_2O$ "large-scale":

DOE NNSA SSGF Annual Meeting 2022

"small-scale": atomic electronic environments

EM radiation (photons), dependent on wavelength, interacts with crystallographic b structure at multi-scales

Measuring geophysical and geochemical properties of hydrated sulfates

1. What role do hydrous sulfates play at depth? What are their stabilities at non-ambient conditions, and can they retain molecular water? 2. 3. How does Fe affect the properties of hydrated sulfates?

Szomolnokite FeSO₄·H₂O

1.5"

X-ray Diffraction: crystal structure, thermodynamic parameters for modeling e.g. equation of state, density, bulk sound velocity Synchrotron Mössbauer Spectroscopy (SMS)/

Nuclear Resonant Inelastic X-ray Scattering (NRIXS) e.g. spin state of ⁵⁷Fe, local coordination environment / sound velocities, crystal lattice softening

Infrared Spectroscopy: molecular vibrations in a material e.g. bonding environments, thermal properties, can indicate changes in crystal structure

DOE NNSA SSGF Annual Meeting 2022

Iron sulfates in planetary environments

Measuring geophysical and geochemical properties of iron sulfates

1) Structural information 2) Lattice dynamics 3) Vibrational properties of bonds

SSGF reflection

DOE NNSA SSGF Annual Meeting 2022

Behavior of FeSO₄·H₂O under extreme pressure and cryogenic temperatures

X-ray diffraction (XRD) technique

DOE NNSA SSGF Annual Meeting 2022

X-ray Diffraction

Olivia Pardo opardo@caltech.edu

| 11

XRD reveals two structural phase transitions in FeSO₄·H₂O

<u>Olivia S. Pardo</u>, Vasilije V. Dobrosavljevic, Tyler Perez, Wolfgang Sturhahn, Zhenxian Liu, George R. Rossman, Jennifer M. Jackson, American Mineralogist (2022, in press).

Select X-ray Diffraction Patterns

X-ray Diffraction

XRD reveals two structural phase transitions in FeSO₄·H₂O

DOE NNSA SSGF Annual Meeting 2022

X-ray Diffraction

Iron sulfates in planetary environments

Measuring geophysical and geochemical properties of iron sulfates

1) Structural information 2) Lattice dynamics 3) Vibrational properties of bonds

SSGF reflection

DOE NNSA SSGF Annual Meeting 2022

Behavior of FeSO₄·H₂O under extreme pressure and cryogenic temperatures

Nuclear resonant spectroscopy

Sample Chamber

Lattice dynamics within FeSO₄·H₂O: high pressure

Vibrational modes per unit energy

Partial Phonon Density of States

DOE NNSA SSGF Annual Meeting 2022

Nuclear Resonant Inelastic X-ray Scattering

Average force of bonds acting on the ⁵⁷Fe atoms

Mean Force Constant

NRIXS

Lattice dynamics within FeSO₄·H₂O: high pressure

Synchrotron Mössbauer Spectroscopy

Spectra structure determined by hyperfine field parameters

DOE NNSA SSGF Annual Meeting 2022

Lattice dynamics within FeSO₄·H₂O: high pressure

Synchrotron Mössbauer Spectroscopy

Spectra structure determined by hyperfine field parameters

DOE NNSA SSGF Annual Meeting 2022

Distortion of electric field gradient around 57Fe atom

Iron sulfates in planetary environments

Measuring geophysical and geochemical properties of iron sulfates

1) Structural information 2) Lattice dynamics

SSGF reflection

DOE NNSA SSGF Annual Meeting 2022

Behavior of FeSO₄·H₂O under extreme pressure and cryogenic temperatures

3) Vibrational properties of bonds

Infrared spectroscopy

v3: 3371 cm⁻¹

v2: 1520 cm⁻¹

• Infrared spectroscopy: infrared light is *absorbed* by a molecule when the energy of the incident light is equal to differences in vibrational energy levels within the molecule

Vibrational fre

DOE NNSA SSGF Annual Meeting 2022

equency:
$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$

• Vibrational motions of a molecule: bending and stretching/contracting

• Fourier transform infrared spectroscopy measurements taken at Brookhaven National Laboratory, NSLS-II

• Beamline 22-IR-1 with **Dr. Zhenxian Liu**

• Wavenumber range: 400-5000 cm⁻¹

Infrared Spectroscopy

Vibrational properties of FeSO₄·H₂O: high pressure

Collaboration with Dr. Zhenxian Liu at Brookhaven National Laboratory

Retention of H₂O in high-pressure phases

 Indication of increased H₂O coordination within the crystal structure at pressure

• Reversible and H₂O is retained upon decompression

Bond strength increases

DOE NNSA SSGF Annual Meeting 2022

Compression Spectra

Infrared Spectroscopy

Vibrational properties of FeSO₄·H₂O: high pressure

DOE NNSA SSGF Annual Meeting 2022

Infrared Spectroscopy

Changes in the vibrational properties are **reversible** during low temperature cycling

Vibrational properties of FeSO₄·H₂O: high pressure, low temperature

DOE NNSA SSGF Annual Meeting 2022

Infrared Spectroscopy

Vibrational properties of FeSO₄·H₂O: high pressure, low temperature

DOE NNSA SSGF Annual Meeting 2022

Infrared Spectroscopy

Summary of experimental results: FeSO₄·H₂O

X-ray Diffraction: crystal structure, thermodynamic parameters for modeling e.g. equation of state, density, bulk sound velocity

Synchrotron Mössbauer Spectroscopy/ Nuclear Resonant Inelastic X-ray Scattering e.g. spin state of Fe, local coordination environment / sound velocities, crystal lattice softening

Infrared Spectroscopy: molecular vibrations in a material

e.g. bonding environments, thermal properties, can indicate changes in crystal structure

- Discovery of a new phase transition around 14 GPa (γ -Sz)
- Elastic softening across α -Sz to β -Sz
- increase in QS values and additional sites at ~7 GPa could be attributed to a decrease in symmetry in the Fe²⁺ coordination environment and structural phase transition
- Retention of molecular water in the new γ -Sz high-pressure phase
- Significant changes in spectra at low T, lower P: related to phase transition?
- Suggestions of a positive Clapeyron slope

Exploring multi-valent sulfates: Römerite Fe²⁺Fe³⁺₂(SO₄)₄·14H₂O

(Natural sample; Chilé)

DOE NNSA SSGF Annual Meeting 2022

Szomolnokite

- Sulfate tetrahedra
- Ferrous Fe²⁺ octahedra
- Ferric Fe³⁺ octahedra
- Oxygen
- Hydrogen

Exploring multi-valent sulfates: Römerite Fe²⁺Fe³⁺₂(SO₄)₄·14H₂O

Work of 2021 Caltech WAVE Fellow Nina Gilkyson

- Ambient conditions, cryogenic, and high pressure synchrotron infrared spectroscopy
- Ambient conditions and cryogenic **single** crystal-X-ray diffraction (thermal expansion)

Sulfate tetrahedra Ferrous Fe²⁺ octahedra Ferric Fe³⁺ octahedra Oxygen Hydrogen

Structural and Vibrational Investigation of Römerite, Fe²⁺Fe³⁺₂(SO₄)₄ · 14H₂O, under Icy Satellite Conditions

Summary and upcoming work

- As on Earth, sulfur cycling in other planetary environments requires a better understanding of the properties of hydrated sulfates at depth
- This work: experiments at the pressures and low-temperatures of satellite interiors like Europa and Ganymede, and extends to pressures relevant to much larger planetary bodies like Earth and Mars: structural, vibrational, electronic properties

DOE NNSA SSGF Annual Meeting 2022

Next steps:

Take a holistic approach that integrates all the macroscopic and microscopic properties to predict the elastic and transport behavior of hydrated sulfates in icy satellite interiors

Iron sulfates in planetary environments

Measuring geophysical and geochemical properties of iron sulfates

Behavior of FeSO₄·H₂O under extreme pressure and cryogenic temperatures

SSGF reflection

DOE NNSA SSGF Annual Meeting 2022

DOE NNSA SSGF Reflection

DOE NNSA SSGF Annual Meeting 2022

Lawrence Livermore National Laboratory Practicum 2019

Rick Kraus

LLNL Practicum Coordinator

Earl O'bannon

DOE NNSA SSGF Annual Meeting 2022

High Pressure Physics Group

Zsolt Jenei

Will Evans

Lawrence Livermore National Laboratory Practicum 2019

Dynamic Compression of Silicon: Behavior of Metastable Phases

DOE NNSA SSGF Annual Meeting 2022

Pressure vs. Time

Lawrence Livermore National Laboratory ACP

Structural study in praseodymium compressed to 185 GPa

O'Bannon III, Earl & Pardo, O. & Söderlind, Per & Sneed, Daniel & Lipp, Magnus & Park, Changyong & Jenei, Zs. (2022). Systematic structural study in praseodymium compressed in a neon pressure medium up to 185 GPa. Physical Review B. 105.

DOE NNSA SSGF Annual Meeting 2022

Summary and upcoming work

- As on Earth, sulfur cycling in other planetary environments requires a better understanding of the properties of hydrated sulfates at depth
- This work: experiments at pressures and low-temperatures of satellite interiors like Europa and Ganymede, and extends to pressures relevant to much larger planetary bodies like Earth and Mars: structural, vibrational, electronic properties

Questions or comments: opardo@caltech.edu

Next steps:

Take a holistic approach that integrates all the macroscopic and microscopic properties to predict the elastic and transport behavior of hydrated sulfates in icy satellite interiors

