Development of mid-infrared lasers for soft X-ray high harmonic generation

Drew Morrill

Outgoing SSGF fellow JILA/ University of Colorado Boulder

Annual Program Review 22 June 2022

Outline

What motivates the project:

Why is a tabletop source of laserlike soft X-ray light needed, and how do you do it?

Building a 3.1 micron wavelength ultrafast laser

- Optical parametric chirped pulse amplification
- Stretching, shaping and compressing laser pulses
- Fiber front end laser

Soft X-ray light

The usefulness of coherent soft X-ray light

- nanometer spatial resolution (1 keV $\rightarrow \lambda$ =1.2 nm)
- femtosecond temporal resolution (for HHG)

Example: coherent diffractive imaging

Mapping coral crystal orientation using O edge (536.5 eV) at COSMIC, ALS

Biological imaging

Semiconductor chip

metrology

Core-level spectroscopies

Optics Express 19, 22470 (2011); PNAS **118** (3) e2019068118 (2021) "If you can't measure it, you cannot understand or optimize...."

Current sources of coherent soft X-rays

Synchrotrons & free electron lasers

als.lbl.gov

Current sources of coherent soft X-rays

Synchrotrons & free electron lasers

als.lbl.gov

Tabletop sources complimentary

xfel.eu

High harmonic generation (HHG)

High harmonic generation (HHG) in a waveguide

An early high pressure HHG source

Laser machined gas inlets

- Phase matching requirement limits peak laser intensity
- Using a gas filled waveguide increases interaction volume

Science 280, 1412 (1998); Physical Review Letters 83, 2187 (1999)

Higher HHG photon energies require longer wavelength driving lasers

Set to 700 C and feel 3 μm micron wavelength light

Popmintchev, Science 336, 1287-1291 (2012)

Outline

What motivates the project:

Why is a tabletop source of laserlike soft X-ray light needed, and how do you do it?

Building a 3.1 micron wavelength ultrafast laser

- A fiber-based front end
- Stretching, shaping and compressing laser pulses
- Optical parametric amplification

A laser source to drive soft X-ray HHG

• 2-4 μm wavelength 🛛 ◄

mid-infrared

- Pulse duration ~ 8 cycles (80 fs)
- Repetition rate \geq 1 kHz

<u>CliffsNotes</u> version for experts: overview of the OPCPA

In 8 minutes, you will understand this,

or your money back!

Mid-infrared laser sources

Direct laser emission in the mid-infrared is possible (ie, Cr- and Fe-doped chalcognides), but technology is still immature.

Our approach: **nonlinear frequency conversion**

https://en.wikipedia.org/wiki/Laser

Optical parametric amplification (OPA)

An actual OPA crystal in the lab

Drew Morrill: SSGF Program Review 2022

14

Simplified laser schematic

Stretching, compressing and shaping laser pulses

Stretching, compressing and shaping laser pulses

Pulse shaper

Stretching, compressing and shaping laser pulses

Pulse shaper

Without pulse shaping

With pulse shaping

Simplified laser schematic

Overview of the OPCPA

Generation of synchronized 1 μm and 1.5 μm light via highly nonlinear fiber

ASSL 2021 - Morrill et al., JILA, Boulder, CO, USA

F. Tauser, A. Leitenstorfer, W. Zinth, Opt. Exp. 11²(2003)

OPCPA delivers excellent mode and stability at 3.1 μm

3.1 µm beam profile

3.1 µm spectrum

3.1 µm stability (limited by environment)

Future work ...

Scaling pulse energy by factor of 4 XUUS5 HHG system from KM Labs

Antiresonant hollowcore fiber for HHG

Jaworski et al, Sensors 20 (2020)

ASSL 2021 - Morrill et al., JILA, Boulder, CO, USA

Acknowledgements

JILA

Margaret Murnane Henry Kapteyn Michaël Hemmer Daniel Carlson Will Hettel

NIST

Dr. Scott Diddams Dr. Dan Lesko Dr. Tsung-han Wu

CU Physics Tin Nguyen Thomas Schibli

STEWARDSHIP SCIENCE GRADUATE FELLOWSHIP

