

UNIVERSITY OF MARYLAND AT COLLEGE PARK INSTITUTE FOR RESEARCH IN ELECTRONICS AND APPLIED PHYSICS

# Applications of intense mid-infrared laserplasma interactions

Daniel Woodbury, R. M. Schwartz, L. Feder, E. Rockafellow, A. Goffin, B. Miao, F. Salehi, A. Korolov, J. Isaacs, J. K. Wahlstrand and H. M. Milchberg





# **Selected laser-plasma applications**



#### 2. Nonlinear self-guiding



3. Laser-plasma acceleration and incoherent EUV/X-ray sources





1. T. Popmintchev, et al. Science **336**, 1287-1291 (2012). 2. https://www.trumpf-scientific-lasers.com/products/dira-series/ 3a. F. Albert et al., Plasma Phys. Control. Fusion **56**, 084015 (2014). 3b. J. Weisshaupt, et al., Nat. Photonics **8**, 927-930 (2014).







# **UMD mid-IR TW laser system**

- 25 mJ, ~80 fs,  $\lambda$ =3.9  $\mu$ m pulses, 0.3 TW (TW=10<sup>12</sup> W)
- Bypassing compressor produces **chirped 70** ps pulses
- (G. Andriukaitis *et al.*, *Optics Lett.* **36**, 2755 (2011))









- Introduction
  - Mid-IR laser plasma interactions
  - Overview of UMD mid-IR laser system
- $\circ~$  Laser wakefield acceleration with mid-IR laser pulses
  - Relativistic self-focusing in near-critical plasma
- **o** Ultralow plasma density measurements with avalanche ionization
  - Overview of avalanche ionization
  - Remote radiation detection
- **o** Mid-IR/LWIR self-guiding mediated by avalanche ionization
  - Ionization yield measurements over 14 decades
  - Effective refractive index; propagation simulations



- Laser pulse expels electrons through ponderomotive force  $(a_0 \propto \sqrt{I\lambda^2})$ .
- Resulting oscillations have high electric field gradients, reaching ~100 GV/m, compared to ~10 MV/m in conventional accelerators
- SLAC acceleration distance for a 50 GeV electron beam: 3.2 km; LWFA could shrink to ~30 cm
- However, requires large lasers (100 TW-PW)
- How can you translate this to smaller, table-top (~1 TW) lasers?



Adapted from S. M. Hooker *et al.,* J. Phys. B **47**, 234003 (2014).



- Nonlinear refractive index
  - Arises from relativistic shift of plasma frequency

$$\eta = \sqrt{1 - \frac{\omega_0^2}{\gamma \omega_p^2}} = \sqrt{1 - \frac{N_e}{\gamma N_{cr}}} \approx \eta_0 + \eta_2(\lambda)I$$

• Critical power for self-focusing, related to critical density



• High  ${}^{N_e}/{}_{N_{cr}}$  is easier to achieve at longer wavelengths, and allows self focusing to high intensities needed for LWFA



#### **Mid-IR LWFA experimental setup**



- Focal spot 30  $\mu$ m FWHM, I<sub>0</sub>  $\cong$  2 x 10<sup>16</sup>W/cm<sup>2</sup>, a<sub>0</sub>~0.5
- Supercritical density in the mid-IR even for room temp gas jet
- Measured 2-10 MeV electron beam profiles and spectra
- Observed correlations of acceleration onset and quality with self-focusing length
- D. Woodbury, et al. Opt. Lett. **43**, 1131 (2018)



- Introduction
  - Mid-IR laser plasma interactions
  - Overview of UMD mid-IR laser system
- $\circ~$  Laser wakefield acceleration with mid-IR laser pulses
  - Relativistic self-focusing in near-critical plasma
- $\circ~$  Ultralow plasma density measurements with avalanche ionization
  - Overview of avalanche ionization
  - Remote radiation detection
- $\circ~$  Mid-IR/LWIR self-guiding mediated by avalanche ionization
  - Ionization yield measurements over 14 decades
  - Effective refractive index; propagation simulations



- Start with initial electron, heated by laser driven collisions
- Eventually gain enough energy to ionize another molecule





- Number of electrons double, and process repeats: single electron sensitivity
- For picosecond breakdown, electron motion is limited by diffusion, leading to discrete countable sites





• Experiments with shorter wavelengths suffered from unwanted laser driven multi-photon ionization creating extra electron seeds



 Moving to longer wavelengths enhances collisional heating, while also suppressing multiphoton ionization





• High resolution imaging of focal volume



• Timing measured with spectrum of backscatter of the *chirped* avalanche pulse





# Motivation: Measuring radioactivity remotely with avalanche

 Passive techniques: Conventional detectors and spectroscopy dramatically lose sensitivity with range



Gamma rays have linear absorption



 Detect radiation induced charges in air (~10<sup>4</sup>-10<sup>7</sup> cm<sup>-3</sup>) at range using avalanche breakdown



V. L. Granatstein and G. S. Nusinovich, J. Appl. Phys. **108**, 063304 (2010). P. Sprangle, *et al.*, Phys. Plasmas **21**, 013103 (2014).





# **Experiment: Measuring radioactivity remotely with avalanche**

- Avalanche seeded by electrons and weakly-bound negative ions near a Po-210 alpha source (inset)
- Backscatter diagnostics to test viability of remote detection; received follow-up funding for a field demonstration



[R. Schwartz, et al. Sci Adv 5, eaav6804 (2019)], [D. Woodbury et al. Optica 6, 811 (2019)]



# **On-off sensitivity**





- Introduction
  - Mid-IR laser plasma interactions
  - Overview of UMD mid-IR laser system
- $\circ~$  Laser wakefield acceleration with mid-IR laser pulses
  - Relativistic self-focusing in near-critical plasma
- $\circ~$  Ultralow plasma density measurements with avalanche ionization
  - Overview of avalanche ionization
  - Remote radiation detection
- **o** Mid-IR/LWIR self-guiding mediated by avalanche ionization
  - Ionization yield measurements over 14 decades
  - Effective refractive index; propagation simulations



# **Self-focusing and filamentation**

- Nonlinear refractive index  $n = n_0 + n_2 I$  counteracts diffraction
- Gives critical power:

$$P_{cr} = \frac{\alpha \lambda^2}{n_0 n_2}$$

• Beams self-focus until stopped by a defocusing mechanism (ionization)

• For  $P \gg P_{cr}$ , beam is unstable to modulation and breakup  $\rightarrow$  interest in LWIR









- Experiment with  $P \sim 2P_{cr}$ ,  $\lambda = 10.2 \ \mu m$  pulses saw self-guiding in ~1 cm channel at ~1 TW/cm<sup>2</sup>
- Negligible tunnel ionization at 1 TW/cm<sup>2</sup>: New collapse mechanism?



S. Tochitsky, et al., Nat. Phot. 13, 41-46 (2019).



• Use methods to test laser produced (transient) plasma that can't be measured any other way

• An ultrashort pump pulse (274 fs, 1  $\mu m$  or 85 fs, 3.9  $\mu m$ ) ionizes target gas, and mid-IR probe amplifies it. Different geometries (a) and measurement techniques (a, b) capture wide range in yield



[D. Woodbury, et al. PRL 124, 013201 (2020)]



# Measuring multiphoton ionization: 10<sup>3</sup>-10<sup>9</sup> cm<sup>-3</sup>





## **Extreme dynamic range and sensitivity**

 Our experiments verified normal ionization mechanisms with high precision

• Saw breakdowns from contaminant and aerosols





- We developed a way to incorporate discrete avalanches into a nonlinear propagation code
  - Avalanche growth model
  - Effective plasma index
  - Incorporation of contaminants and aerosols
- Results summarized in figure for ~1 TW beams
- (a) Aerosol initiated avalanche leads to low intensity channeling
- (b) Contaminant only leads to high intensity channeling
- (c) Comparison with same power in the NIR





# **Many Thanks**

