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Meteoroids and space debris

P> Hypervelocity impacts routinely occur in space.
» Velocity greater than material speed of sound — hydrodynamic behavior.
» Caused by micrometeoroids and orbital debris (MMOD).
meteorshowers.org » ‘
» Meteoroids & dust: 11-72km/s. > Space debris: 7-11km/s.
» Throughout the solar system. » Concentrated in low-Earth orbit (LEO).
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Risk to spacecraft

» Mechanical damage from large impactors.
» May be catastrophic if critical components hit.
» Electrical damage from impact plasma.
» Potential for damaging EMP and RF emission.
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Impact Process
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Research questions

@ What are the characteristics of the ejected material?

@ How do we model dust charging and dynamics?

@ How does dust affect the expanding plasma and associated measurements?
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Light gas gun campaign
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» 13 shots at NASA Ames Vertical Gun Range (AVGR) in early 2019, ~5km/s.
> Varied target material and bias, including aluminum and regolith simulant.
» Optical, RF, plasma, and dust measurements.
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n Witness plate design
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» Thin PET (Mylar) film witness plates to characterize microscopic debris.

» Multiple thickness films 1-15 pm, results from 1 pm films.
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Impact observations

Aluminum Regolith

» Aluminum debris ejected in thin conical sheet ~30° from vertical.

» Regolith ejected in cone around vertical with ~20° half-angle.
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Impact observations

Regolith ejected in cone around vertical with ~20° half-angle.
~400x (by mass) material ejected from regolith target compared to aluminum.
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Particle size distribution (in region of peak flux)
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Plasma measurements in debris plume
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» Thin bands likely indicate dust (impulsive measurement).

» Order-of-magnitude agreement with measured particle size distribution.
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Ejecta modeling
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Extended OML model
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» Currents: OML collection, thermionic emission.
» Forces: OML collection, Coulomb scattering, external fields.

> Energy: OML collection, thermionic emission, blackbody radiation, recombination
and thermalization at surface, ablation.

» Mass: Accumulation, ablation.
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12 Solution method

» Parameterize (almost) everything using fundamental quantities:
Ud Min ﬂ,n
Uin = — Hin = /Bi,n =
Uti,n Me Te
— Td T4 = & ] = 7|Ia| Sp = egbd
pd ADe d Te @ 47r7‘(216neg Vte d kT,
> Solve ji(pa, Bi, ti, pa) — Je(wa) + jin(Te, 7a, pa) = 0 for equilibrium potential ¢q.
» Evolve position, velocity, temperature, and mass using ODE integration.
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Expansion model

» Renormalization-group symmetry (RGS) for a spherically expanding plasma bunch.
» Self-similar solution to the Vlasov equation.
» Function of space and time: f(r,v,t) = f(7,0,0).
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Comparison with plasma measurements

Likely dust observations
Plasma currents (debris plume)
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» RGS qualitatively captures plasma observations (for aluminum).
» Negative charge observed for aluminum, positive for regolith.
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Initial charge attachment

Total charge attachment
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> ~0.07-1.2% total electron attachment for regolith, ~0.02—0.26 % for aluminum.
» Greater depletion in the debris plume — localized dusty plasma effects.
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Effect of environment
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» 0.5 Torr neutral background at AVGR
» Affects trajectory — may stop nano-scale debris.

» Neutral background counteracts radiative cooling, slightly higher Tj.
> Significant increase in thermionic emission (I, o< T3 exp (—W/kTy)).
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Simulated dust current
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» Account for uncertain conditions with a stochastic model.

» Sample size, initial velocity, and temperature of many dust particles.

» Arrival times and sign of charge qualitatively match experimental observations.

\a Stanford University




Summary and conclusions

> Measured hypervelocity impact ejecta in a light gas gun campaign.

» Particle size distributions of microscopic ejecta follow power laws.

» Predicted count in debris plume agrees with plasma data.

» Developed a dust charging and dynamics model for impact conditions.

» Extended OML with additional physics to remain valid throughout expansion.

» Rapid assessment of effects of conditions and parameter uncertainty.

» First quantitative estimate of dust charging in the impact environment.
» Dusty plasma effects are likely in the debris plume.
» Impact environment significantly affects dynamics and charge state.

» Thermionic emission explains observations of positively charged dust.
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