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1 Meteoroids and space debris

I Hypervelocity impacts routinely occur in space.

I Velocity greater than material speed of sound → hydrodynamic behavior.

I Caused by micrometeoroids and orbital debris (MMOD).

meteorshowers.org

I Meteoroids & dust: 11–72 km/s.

I Throughout the solar system.

ESA

I Space debris: 7–11 km/s.

I Concentrated in low-Earth orbit (LEO).



2 Risk to spacecraft

I Mechanical damage from large impactors.

I May be catastrophic if critical components hit.

I Electrical damage from impact plasma.

I Potential for damaging EMP and RF emission.

ESA 2005



3 Impact Process
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4 Research questions

1 What are the characteristics of the ejected material?

2 How do we model dust charging and dynamics?

3 How does dust affect the expanding plasma and associated measurements?



5 Light gas gun campaign
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I 13 shots at NASA Ames Vertical Gun Range (AVGR) in early 2019, ∼5 km/s.

I Varied target material and bias, including aluminum and regolith simulant.

I Optical, RF, plasma, and dust measurements.



6 Witness plate design
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I Thin PET (Mylar) film witness plates to characterize microscopic debris.

I Multiple thickness films 1–15 µm, results from 1 µm films.



7 Impact observations

I Aluminum debris ejected in thin conical sheet ∼30° from vertical.

I Regolith ejected in cone around vertical with ∼20° half-angle.

I ∼400x (by mass) material ejected from regolith target compared to aluminum.



7 Impact observations
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I Aluminum debris ejected in thin conical sheet ∼30° from vertical.

I Regolith ejected in cone around vertical with ∼20° half-angle.

I ∼400x (by mass) material ejected from regolith target compared to aluminum.



8 Particle size distribution (in region of peak flux)
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9 Plasma measurements in debris plume
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I Thin bands likely indicate dust (impulsive measurement).

I Order-of-magnitude agreement with measured particle size distribution.



10 Ejecta modeling
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11 Extended OML model

rd, Qd,

φd, Td

v

∑
αIc,α Ith

∑
αPc,α, Pneu

Pth, Ptherm,
Prad, Pabl

Γacc

Γabl

∑
αFc,α, Fsc,i

Fext

I Currents: OML collection, thermionic emission.

I Forces: OML collection, Coulomb scattering, external fields.

I Energy: OML collection, thermionic emission, blackbody radiation, recombination
and thermalization at surface, ablation.

I Mass: Accumulation, ablation.



12 Solution method

I Parameterize (almost) everything using fundamental quantities:

ui,n =
vd
vti,n

µi,n =
mi,n

me
βi,n =

Ti,n
Te

ρd =
rd
λDe

τd =
Td
Te

jα =
|Iα|

4πr2dene0vte
ϕd =

eφd
kTe

I Solve ji(ρd, βi, µi, ϕd)− je(ϕd) + jth(Te, τd, ϕd) = 0 for equilibrium potential ϕd.

I Evolve position, velocity, temperature, and mass using ODE integration.

ṙ = vd mdv̇d =
∑

α

Fc,α + Fsc,i + Fext

mdcp(Td)Ṫd =
∑

α

Pc,α + Pth + Psurf + Pabl ṁd = mi (Γacc − Γabl) .



13 Expansion model

I Renormalization-group symmetry (RGS) for a spherically expanding plasma bunch.

I Self-similar solution to the Vlasov equation.

I Function of space and time: f(r,v, t) = f(r̃, ṽ, 0).

ne(r, t) =
ne0

(1 + Ω2t2)
3/2

exp

(
−1

2

Ω2

1 + Ω2t2

(
r − v0t
Cs

)2
)

vexp(r, t) =
Ω2rt+ v0
1 + Ω2t2

ne0 =
Qimp√

2π3

(
Ω

Cs

3)
Ω =

vti
L0︸︷︷︸

scale length
L0∼rc

Cs =

√
kBTi0 + ZikB

Te0
mi + Zime︸ ︷︷ ︸

acoustic speed



14 Comparison with plasma measurements
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Likely dust observations

I RGS qualitatively captures plasma observations (for aluminum).

I Negative charge observed for aluminum, positive for regolith.



15 Initial charge attachment
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I ∼0.07–1.2 % total electron attachment for regolith, ∼0.02–0.26 % for aluminum.

I Greater depletion in the debris plume → localized dusty plasma effects.



16 Effect of environment
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I 0.5 Torr neutral background at AVGR
I Affects trajectory – may stop nano-scale debris.

I Neutral background counteracts radiative cooling, slightly higher Td.
I Significant increase in thermionic emission (Ith ∝ T 2

d exp (−W/kTd)).



17 Simulated dust current
Aluminum

Regolith
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I Account for uncertain conditions with a stochastic model.
I Sample size, initial velocity, and temperature of many dust particles.

I Arrival times and sign of charge qualitatively match experimental observations.



18 Summary and conclusions

I Measured hypervelocity impact ejecta in a light gas gun campaign.

I Particle size distributions of microscopic ejecta follow power laws.

I Predicted count in debris plume agrees with plasma data.

I Developed a dust charging and dynamics model for impact conditions.

I Extended OML with additional physics to remain valid throughout expansion.

I Rapid assessment of effects of conditions and parameter uncertainty.

I First quantitative estimate of dust charging in the impact environment.

I Dusty plasma effects are likely in the debris plume.

I Impact environment significantly affects dynamics and charge state.

I Thermionic emission explains observations of positively charged dust.
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