Dusty Plasma Effects in Hypervelocity Impacts

Gil Shohet

Space Environment and Satellite Systems Lab Aeronautics & Astronautics, Stanford University

SSGF Program Review, August 2021

Meteoroids and space debris

- Hypervelocity impacts routinely occur in space.
 - Velocity greater than material speed of sound \rightarrow hydrodynamic behavior.
 - Caused by micrometeoroids and orbital debris (MMOD).

Meteoroids & dust: 11–72 km/s.
Throughout the solar system.

- **Space debris**: 7–11 km/s.
- Concentrated in low-Earth orbit (LEO).

Risk to spacecraft

- Mechanical damage from large impactors.
 - May be catastrophic if critical components hit.
- Electrical damage from impact plasma.
 - Potential for damaging EMP and RF emission.

Impact Process

3

Crater Formation Jetting Initial Expansion Dust Charging Electromagnetic Radiation Charge Separation

Research questions

) What are the characteristics of the ejected material?

2 How do we model dust charging and dynamics?

B) How does dust affect the expanding plasma and associated measurements?

Light gas gun campaign

13 shots at NASA Ames Vertical Gun Range (AVGR) in early 2019, ~5 km/s.
 Varied target material and bias, including aluminum and regolith simulant.
 Optical, RF, plasma, and dust measurements.

6 Witness plate design

▶ Thin PET (Mylar) film witness plates to characterize microscopic debris.

• Multiple thickness films $1-15 \,\mu$ m, results from $1 \,\mu$ m films.

Impact observations

SES

Space Environment and Satellite Systems

Aluminum

Aluminum debris ejected in thin conical sheet \sim 30° from vertical.

Regolith ejected in cone around vertical with $\sim 20^{\circ}$ half-angle.

Impact observations

- > Aluminum debris ejected in thin conical sheet \sim 30° from vertical.
- \blacktriangleright Regolith ejected in cone around vertical with ${\sim}20^\circ$ half-angle.
- \blacktriangleright ~400x (by mass) material ejected from regolith target compared to aluminum.

Particle size distribution (in region of peak flux)

Stanford University

Space Environment and Satellite Sv.

8

Plasma measurements in debris plume

Stanford University

- Thin bands likely indicate dust (impulsive measurement).
- Order-of-magnitude agreement with measured particle size distribution.

9

10 Ejecta modeling

11 Extended OML model

- Currents: OML collection, thermionic emission.
- **Forces**: OML collection, Coulomb scattering, external fields.
- **Energy**: OML collection, thermionic emission, blackbody radiation, recombination and thermalization at surface, ablation.

Stanford University

► Mass: Accumulation, ablation.

12 Solution method

Parameterize (almost) everything using fundamental quantities:

$$\begin{split} u_{\mathrm{i,n}} &= \frac{v_{\mathrm{d}}}{v_{\mathrm{ti,n}}} & \mu_{\mathrm{i,n}} &= \frac{m_{\mathrm{i,n}}}{m_{\mathrm{e}}} & \beta_{\mathrm{i,n}} &= \frac{T_{\mathrm{i,n}}}{T_{\mathrm{e}}} \\ \rho_{\mathrm{d}} &= \frac{r_{\mathrm{d}}}{\lambda_{De}} & \tau_{\mathrm{d}} &= \frac{T_{\mathrm{d}}}{T_{\mathrm{e}}} & j_{\alpha} &= \frac{|I_{\alpha}|}{4\pi r_{\mathrm{d}}^2 e n_{\mathrm{e0}} v_{\mathrm{te}}} & \varphi_{\mathrm{d}} &= \frac{e \phi_{\mathrm{d}}}{k T_{\mathrm{e}}} \end{split}$$

► Solve $j_i(\rho_d, \beta_i, \mu_i, \varphi_d) - j_e(\varphi_d) + j_{th}(T_e, \tau_d, \varphi_d) = 0$ for equilibrium potential φ_d .

Evolve position, velocity, temperature, and mass using ODE integration.

$$\begin{split} \dot{r} &= v_{\rm d} & m_{\rm d} \dot{v}_{\rm d} = \sum_{\alpha} F_{\rm c,\alpha} + F_{\rm sc,i} + F_{\rm ext} \\ m_{\rm d} c_{\rm p}(T_{\rm d}) \dot{T}_{\rm d} &= \sum_{\alpha} P_{\rm c,\alpha} + P_{\rm th} + P_{\rm surf} + P_{\rm abl} & \dot{m}_{\rm d} = m_{\rm i} \left(\Gamma_{\rm acc} - \Gamma_{\rm abl} \right). \end{split}$$

3 Expansion model

- ▶ Renormalization-group symmetry (RGS) for a spherically expanding plasma bunch.
 - Self-similar solution to the Vlasov equation.
 - Function of space and time: $f(\mathbf{r}, \mathbf{v}, t) = f(\tilde{\mathbf{r}}, \tilde{\mathbf{v}}, 0)$.

$$n_{\rm e}(r,t) = \frac{n_{\rm e0}}{\left(1 + \Omega^2 t^2\right)^{3/2}} \exp\left(-\frac{1}{2} \frac{\Omega^2}{1 + \Omega^2 t^2} \left(\frac{r - v_0 t}{C_{\rm s}}\right)^2\right)$$

$$v_{\rm exp}(r,t) = \frac{\Omega^2 r t + v_0}{1 + \Omega^2 t^2}$$

$$n_{\rm e0} = \frac{Q_{\rm imp}}{\sqrt{2\pi^3}} \left(\frac{\Omega}{C_{\rm s}}^3\right) \qquad \Omega = \underbrace{\frac{v_{\rm ti}}{L_0}}_{\substack{\rm scale \ length\\ L_0 \sim r_{\rm c}}} \qquad \underbrace{C_{\rm s} = \sqrt{\frac{k_{\rm B}T_{\rm i0} + Z_{\rm ik_{\rm B}}T_{\rm e0}}{m_{\rm i} + Z_{\rm i}m_{\rm e}}}_{\substack{\rm acoustic \ {\rm speed}}}$$

14 Comparison with plasma measurements

SES

Space Environment and Satellite System:

RGS qualitatively captures plasma observations (for aluminum).

Negative charge observed for aluminum, positive for regolith.

¹⁵ Initial charge attachment

~0.07−1.2 % total electron attachment for regolith, ~0.02−0.26 % for aluminum.
 Greater depletion in the debris plume → localized dusty plasma effects.

16 Effect of environment

- 0.5 Torr neutral background at AVGR
 - Affects trajectory may stop nano-scale debris.

Neutral background counteracts radiative cooling, slightly higher T_d.

• Significant increase in thermionic emission ($I_{\rm th} \propto T_{\rm d}^2 \exp{(-W/kT_{\rm d})}$).

17 Simulated dust current

- Account for uncertain conditions with a stochastic model.
 - Sample size, initial velocity, and temperature of many dust particles.
- Arrival times and sign of charge qualitatively match experimental observations.

¹⁸ Summary and conclusions

- Measured hypervelocity impact ejecta in a light gas gun campaign.
 - Particle size distributions of microscopic ejecta follow power laws.
 - Predicted count in debris plume agrees with plasma data.
- Developed a dust charging and dynamics model for impact conditions.
 - Extended OML with additional physics to remain valid throughout expansion.
 - Rapid assessment of effects of conditions and parameter uncertainty.
- First quantitative estimate of dust charging in the impact environment.
 - Dusty plasma effects are likely in the debris plume.
 - Impact environment significantly affects dynamics and charge state.
 - Thermionic emission explains observations of positively charged dust.

19 Acknowledgements

- DOE NNSA SSGF program & Krell staff
- Advisor: Sigrid Close
- Practicum mentors: Mike Desjarlais, Josh Townsend, Kyle Cochrane
- AFOSR grant FA9550-14-1-0290 (AVGR funding)
- AVGR Staff: Charles Cornelison, Alfredo Perez, Jon-Pierre Wiens, Donald Bowling

