First Principles Studies of Aqueous Solutions at Ambient and Extreme Conditions

Viktor Rozsa

THE UNIVERSITY OF CHICAGO

Outline

- Motivation
- Strategies for Computational Modeling of Water
- 4 Vignettes about water
 - Statistically robust studies on monovalent ions in bulk water
 - Pure water and solvated ions confined in carbon nanotubes
 - First principles spectroscopy and conductivity of water under high pressure/temperature
 - Characteristics of ion solvation under high pressure/temperature
- Conclusions

Motivation: Why water?

• Importance of water:

• Most abundant substance on Earth, necessary ingredient to all life, key to industrial processes, geophysical systems. Deep cultural and geopolitical significance

• Uniqueness of water:

- Universal solvent, increased density upon melting, high viscosity, high surface tension, density maximum
- How do perturbations affect its properties?
 - Solvation of ions
 - Physical confinement
 - High pressure and temperature

Motivation: Why water?

Importance of water:

 Most abundant substance on Earth, necessary ingredient to all life, key to industrial processes, geophysical systems. Deep cultural and geopolitical significance

Uniqueness of water:

- Universal solvent, increased density upon melting, high viscosity, high surface tension, density maximum
- How do perturbations affect its properties?
 - Solvation of ions
 - Physical confinement
 - High pressure and temperature

Computational Modeling of Water NEG NS AVIDAC, 1953 El Capitan, 2023

- Enduring challenge: sufficiently capturing properties of water at feasible computational cost.
- Early models: Stillinger, Rahman (1971): tetrahedral charges on Lennard Jones sites
- State of the art: Quantum mechanical properties of water are used as benchmark of new computational theories

Computational Modeling of Water

- Enduring challenge: sufficiently capturing properties of water at feasible computational cost.
- Early models: Stillinger, Rahman (1971): tetrahedral charges on Lennard Jones sites
- State of the art: Quantum mechanical properties of water are used as benchmark of new computational theories

Our Strategy: First Principles MD

 Need a method that captures subtle time-dependent information in water

Molecular dynamics (MD):

$$-\frac{\partial E(\{\mathbf{R}_j\})}{\partial \mathbf{R}_i} = m_i \ddot{\mathbf{R}}_i$$

- Need theory that can account for polarizable environments, allows for bond breaking
 - **Density Functional Theory:**

$$H_{KS}\psi_i(\mathbf{r}) = \varepsilon_i\psi_i(\mathbf{r})$$

Our strategy is the combination: First Principles
 Molecular Dynamics, as implemented in the Qbox code

R. Car and M. Parrinello, Phys. Rev. Lett., 55, (1985)

63 H2O w/ Li⁺ at 11 GPa, 1000 K

<u>http://qboxcode.org/</u> F. Gygi IBM J. Res. Dev. , **52**, (2008) 10

4 Vignettes about Water

Statistically robust studies on monovalent ions in bulk water

Rozsa *et al.*, J. Chem. Phys, **152** (2020) Zeng, Rozsa, *et al.*, ACS Earth Space Chem., **3**, (2019)

Ab initio spectroscopy and ionic conductivity in water at high pressure and temperature

Rozsa et al., PNAS, 115, (2018)

Pure water and ion solutions under confinement in carbon nanotubes

Rozsa *et al.,* J. Chem. Phys, **152**, 6952 (2020)

The effect of monovalent ion solvation on water at high pressure and temperature

Rozsa et al., J. Chem. Phys, 154 (2021)

Ions in bulk Water: Motivation

- **Fundamental chemistry:** How does water's hydrogen bond network respond to perturbation due to ion solvation?
- **Extensive application**: biochemical processes, molecular engineering of energy materials
- Long history in both experimental and computational literature:
 - Relative consensus on local solvation properties
 - Controversies on long-range properties:
 - <u>Global effects</u>: THz dielectric relaxation, neutron diffraction
 - <u>Local effects</u>: fs-IR, X-ray absorption spectroscopy, Raman scattering

Bulk Ions: Hydrogen Bonding

- Statistically robust (10 independent samples ~60 ps each) simulations of Li+, Na+, and K+ in PBE water
- Statistically significant H-bond density increase in 1st shell: Li+ < Na+ < K+
- No statistically significant H-bond differences in 2nd shell, or bulk
- None of Li+, K+, or Na+ are "structure maker/breaker" in bulk water (PBE model)

Bulk Ions: Diffusion

 ³² independent water trajectories @ PBE level, 400 K, ~60 ps each: 1.86 ns. Average D: 1.95(27) x10⁻⁵ cm²/s: (Error from "Students' T-test" w/ 95% confidence). Importance of many independent runs for sampling

- Li+: D[O] = 1.90 (30)
- Na+: D[O] = 2.1 (34)
- K+: D[O] = 2.43 (39)
- Cannot statistically conclude Li+, K+, or Na+ are "structure maker/breaker" from diffusion analysis in PBE water (contrary to previous reports)

Molecular Polarizability, α_i

• α_i is a measure of how sensitive molecular charge density is to applied electric fields

Molecular Polarizability, α_i

Rozsa et al., J. Chem. Phys, 152 (2020)

- Molecular Polarizability, α_i computed as in Pan et al., J. Chem. Phys **152**, (2018)
- Large sensitivity to local solvation shells:
 - Cation solvation shells reduced: Li+ \sim 6%, Na+ \sim 2% and K+ \sim 1%
- Out of plane molecular polarizability, α_i^{POP} is most sensitive to H-bonding: largest changes
- Verification and generalization of conclusions of Gaiduk et al., J. Phys. Chem. Lett **15**, (2015)
- Molecular polarizabilities are fingerprints of longer-range effect 16

Aqueous bulk ions: Conclusions

- Long timescale (1.5 ns total) AIMD simulations (@PBE) of H₂O+ monovalent cation solutions show that while ions affect 1st solvation shell H-bonding, there is no bulk effect
- None of Li+, Na+, or K+ affect solvated water's global diffusion in a statistically significant (95%) manner.
 Diffusion is not a sensitive probe of global effects of solvated monovalent cations at PBE level of theory.
- Molecular polarizability is a sensitive probe of ion effects in water, able to detect changes beyond the second solvation shell
- Aqueous K+ simulations also applied to isotopic fractionation study including K and Rb-rich minerals

H. Zeng, <u>V. Rozsa</u>, et al., ACS Earth Space Chem. **3**, (2019)

4 Vignettes about Water

Statistically robust studies on monovalent ions in bulk water

Rozsa *et al.*, J. Chem. Phys, **152** (2020) Zeng, Rozsa, *et al.*, ACS Earth Space Chem., **3**, (2019)

Ab initio spectroscopy and ionic conductivity in water at high pressure and temperature

Rozsa et al., PNAS, 115, (2018)

Pure water and ion solutions under confinement in carbon nanotubes

Rozsa *et al.*, J. Chem. Phys, **152**, 6952 (2020)

The effect of monovalent ion solvation on water at high pressure and temperature

Rozsa et al., J. Chem. Phys, 154 (2021)

Confined Solutions: Motivation

- Fundamental chemistry: How does water's hydrogen bond network respond to perturbation due to confinement?
- Extensive application: bio capillaries, molecular engineering of desalination technology, molecular sensors, nanofluidics
- Water's anomalies under confinement:
 - Diameter-dependent phase transitions, including novel phases
 - Enhancements of water diffusion
 - Anisotropic dielectric properties
 - Effect of ions particularly unknown

Confined Solutions: Structure

1.1 nm diameter CNT: Pure, LiCl, KCl

1.5 nm diameter CNT: Pure

- 1.1 nm confinement: cylindrical arrangement, with void in center
- 1.5 nm confinement: occupied inner region
- Ion residence in 1.1 nm solutions: All Li+, K+, and Cl- occupy space towards center of tube, with K+ being most interior
- Coordination shell changes:
 - Li+ SS maintains 4 coordination
 - Desolvation of K+, Cl- ions: decrease by ~1-2.

Confined Dielectric Properties

- Dipole moments: Reduced relative to bulk (9% and 7% for 1.1, 1.5 nm CNTs)
- Molecular polarizabilities: 3% enhanced relative to bulk for 1.1 nm, 1.5 nm unchanged. Degree of enhancement in ion solutions is greater
- Radial dependence of both effects... interfacial origin?

Confined Dielectric Properties

- Dipole moments: Reduced relative to bulk (9% and 7% for 1.1, 1.5 nm CNTs)
- Molecular polarizabilities: 3% enhanced relative to bulk for 1.1 nm, 1.5 nm unchanged. Degree of enhancement in ion solutions is greater
- Radial dependence of both effects... interfacial origin?

Confined Dielectric Properties

- Dipole moments: Reduced relative to bulk (9% and 7% for 1.1, 1.5 nm CNTs)
- Molecular polarizabilities: 3% enhanced relative to bulk for 1.1 nm, 1.5 nm unchanged. Degree of enhancement in ion solutions is greater
- Radial dependence of both effects... interfacial origin?

Confined Dielectric Properties Dipole Moments, μ_i with CNT without CNT Total Non SS Molecular Dipole Moment (D) 8 8 0 9 8 0 7 8 0 8 0 Cation SS CI-SS 重 重 ∙ 重 ŧ W, 1.5 nm (LiCl)_{ag.} 1.1 nm (KCl)_{ag.} 1.1 nm W. 1.5 nm W. 1.1 nm W 1.1 nm (LiCl)_{aq.} 1.1 nm (KCl)_{aq.} 1.1 nm

- Dipole moments: effect of CNT presence is negligible
- **Molecular polarizabilities:** effect of CNT is considerable. w/ CNT: enhancements to α in all solutions relative to bulk. w/out CNT: no enhancements in α_i , and even reductions relative to bulk
- α_i: competing effect of broken H-bonds (reduces α_i) and CNT interface (enhances α_i)

Confined Dielectric Properties Molecular Polarizability, α_i with CNT without CNT Molecular Polarizability, α΄, (Å³) 1.22 1.22 1.42 1.65-Ŧ 1.55-Total Non SS Ŧ Cation SS CI-SS W, 1.5 nm W. 1.1 nm (LiCl)_{ag.} 1.1 nm (KCl)_{ag.} 1.1 nm W, 1.5 nm W 1.1 nm (LiCl)_{ag.} 1.1 nm (KCl)_{ag.} 1.1 nm

- **Dipole moments:** effect of CNT presence is negligible
- **Molecular polarizabilities:** effect of CNT is considerable. w/ CNT: enhancements to α in all solutions relative to bulk. w/out CNT: no enhancements in α_i , and even reductions relative to bulk
- α_i: competing effect of broken H-bonds (reduces α_i) and CNT interface (enhances α_i)

Confined solutions: Conclusions

- Performed first principles simulations of pure water confined in CNT at 1.1 and 1.5 nm diameter. LiCl and KCl in water at 1.1 nm diameter, **verified structural behavior**
- Confinement has a reducing effect on dipole moment, and an enhancement effect molecular polarizability, which is radially dependent.
 Ions may amplify these effects confinement.
- Two **competing effects on molecular polarizability** under confinement: reduction due to broken hydrogen bonds and enhancement from the interaction of water with CNT interface.
- Demonstrate the usefulness of **molecular polarizability as a fingerprint to perturbations** due to confinement

Confined solutions: Conclusions

4 Vignettes about Water

Statistically robust studies on monovalent ions in bulk water

Rozsa *et al.*, J. Chem. Phys, **152** (2020) Zeng, Rozsa, *et al.*, ACS Earth Space Chem., **3**, (2019)

Ab initio spectroscopy and ionic conductivity in water at high pressure and temperature

Rozsa et al., PNAS, 115, (2018)

Pure water and ion solutions under confinement in carbon nanotubes

Rozsa *et al.*, J. Chem. Phys, **152**, 6952 (2020)

The effect of monovalent ion solvation on water at high pressure and temperature

Rozsa et al., J. Chem. Phys, 154 (2021)

HPHT Water: Motivation

Millot et al., Nat. Phys., 14 (2018)

- **Planetary science**: deep water, global carbon cycle, magnetic fields
- Fundamental physics of hydrogen-bonded systems at extreme conditions
- 18 known crystalline phases of ice
- High-pressure, high-temperature region:
 - Mixed, contradictory experimental results
 - Experimental tools: Raman, IR, Brillouin spectroscopy, Conductivity, Neutron scattering

HPHT Water: Motivation

- **Planetary science**: deep water, global carbon cycle, magnetic fields
- Fundamental physics of hydrogen-bonded systems at extreme conditions
- 18 known crystalline phases of ice
- High-pressure, high-temperature region:
 - Mixed, contradictory experimental results
 - Experimental tools: Raman, IR, Brillouin spectroscopy, Conductivity, Neutron scattering

Effect of High P/T on structure

- O-H structure:
 - No large differences in covalent peak maximum
 - First peak minimum is signature of proton dissociation

- O-MLWF indicates significant dissociation
- Structural observations indicate molecular dissociation in both fluids, with more occurring in 20 GPa than 11 GPa

Dissociative Species in High P/T Water

 Dissociation events lead to exotic short-lived ionic species (fs lifetimes) including hydronium/hydroxide, Zundel-like H₅O₂⁺ species (cyan) with a nearby hydroxide. H₇O₃⁺ species H₇O₄⁻

 Dissociation is never unimolecular. Hydroxide/hydronium formations are highly correlated. We find no free protons in the fluid

First Principles Ionic Conductivity, o

- Experimental measurements show large increases in conductivity, but first principles simulation has not fully explained the phenomena
- We use here a **Green Kubo relation**, which is a general result describing the collective dissipative response of any system to a fluctuation. The sample dipole moment is computed with the aid of maximally localized Wannier centers (MLWFs)

$$\mathbf{M}(t) = e \cdot \sum_{i=1}^{N_H} \vec{R}_i^H(t) + 6e \cdot \sum_{i=1}^{N_O} \vec{R}_i^O(t) - 2e \cdot \sum_{i=1}^{N_{MLWF}} \vec{R}_i^{MLWF}(t)$$

$$\sigma = \frac{1}{3k_b TV} \int_0^\infty \langle \dot{\mathbf{M}}(0) \dot{\mathbf{M}}(t) \rangle dt \quad \checkmark$$

$$\sigma = \lim_{t \to \infty} \frac{1}{6tk_bTV} \langle [\mathbf{M}(t) - \mathbf{M}(0)]^2 \rangle$$

First Principles Ionic Conductivity, o

 We find large enhancements of ionic conductivity relative to ambient conditions:

11 GPa, 1000 K: σ = ~1 (Ωcm)⁻¹ **20 GPa, 1000 K**: σ = ~10 (Ωcm)⁻¹

- σ results are 6 and 7 orders of magnitude greater than to ambient water
- Computed σ values are consistent with experimental measurements of massive increase in conductivity

First Principles Ionic Conductivity, o

[3] Hamann *et al.*, Trans. Farad. Soc., **62** (1966)
[4] Mitchell *et al.*, J. Chem. Phys, **76** (1982)
[5] Goldman *et al.*, J. Chem. Phys., **130** (2009)
[6] French *et al.*, Phys. Rev. B., **82** (2010)

 We find large enhancements of ionic conductivity relative to ambient conditions:

11 GPa, 1000 K: σ = ~1 (Ωcm)⁻¹ **20 GPa, 1000 K**: σ = ~10 (Ωcm)⁻¹

- σ results are 6 and 7 orders of magnitude greater than to ambient water
- Computed σ values are consistent with experimental measurements of massive increase in conductivity

From Autocorrelation to Spectrum $\langle \mathbf{r}(\tau)\mathbf{r}(t+\tau)\rangle_{\tau}\mathrm{e}^{-i\omega t}\mathrm{d}t$ $\langle \mathbf{r}(\tau)\mathbf{r}(t+\tau)\rangle_{\tau}$ 0.8 0.6 V3 Fourier 0.4 Transform 0.2 -0.2 0.05 0.2 1000 3000 5000 0 0.1 0.15 0 2000 4000 Time (ps) Wavenumber (1/cm)

All vibrational spectra are Fourier transforms of autocorrelation functions

Raman and IR Spectra: Theory

Fourier transform of dipole moment time correlation function is proportional to IR spectrum:

$$A(\omega) \propto \frac{2\pi\omega^2\beta}{3cV} \int dt e^{-i\omega t} \langle \mathbf{M}(0)\mathbf{M}(t) \rangle$$

Where M(t) are calculated from maximally localized Wannier functions

Fourier transform of polarizability time correlation function is proportional to Raman spectrum:

$$R_{iso}(\omega) \propto \frac{\hbar\omega}{kT} \int dt e^{-i\omega t} \left\langle \overline{\alpha}(0)\overline{\alpha}(t) \right\rangle \qquad \left[\overline{\alpha} = \frac{1}{3} \operatorname{Tr} \alpha \right]$$
$$R_{aniso}(\omega) \propto \frac{\hbar\omega}{kT} \int dt e^{-i\omega t} \left\langle \frac{2}{15} \operatorname{Tr} \beta(0) \beta(t) \right\rangle \qquad \left[\beta = \alpha - \overline{\alpha} \right]$$

- VDOS is not a valid substitute for Raman spectra: difference in O-H stretch frequency and incorrect in lower modes.
- First principles prediction of Raman spectra – excellent agreement with experiment. Also inter/intra breakdown of OH shoulder
- Quenched phase: **liquid-like** Raman spectra from quenched phase
- No new signatures from Raman, but continuum signature in IR

- [12] Goncharov *et al.*, Phys. Rev. Lett., **94** (2005)
 [27] Lin *et al.*, J. Chem. Phys, **121** (2004)
- [41] Lin et al., Geophys. Res. Let., 32 (2005)

- VDOS is not a valid substitute for Raman spectra: difference in O-H stretch frequency and incorrect in lower modes.
- First principles prediction of Raman spectra – excellent agreement with experiment. Also inter/intra breakdown of OH shoulder
- Quenched phase: **liquid-like** Raman spectra from quenched phase
- No new signatures from Raman, but continuum signature in IR

[12] Goncharov *et al.*, Phys. Rev. Lett., **94** (2005)
[27] Lin *et al.*, J. Chem. Phys, **121** (2004)
[41] Lin *et al.*, Geophys. Res. Let., **32** (2005)

- VDOS is not a valid substitute for Raman spectra: difference in O-H stretch frequency and incorrect in lower modes.
- First principles prediction of Raman spectra – excellent agreement with experiment. Also inter/intra breakdown of OH shoulder
- Quenched phase: **liquid-like** Raman spectra from quenched phase
- No new signatures from Raman, but continuum signature in IR

- [12] Goncharov *et al.*, Phys. Rev. Lett., **94** (2005)
 [27] Lin *et al.*, J. Chem. Phys, **121** (2004)
- [41] Lin et al., Geophys. Res. Let., 32 (2005)

- VDOS is not a valid substitute for Raman spectra: difference in O-H stretch frequency and incorrect in lower modes.
- First principles prediction of Raman spectra – excellent agreement with experiment. Also inter/intra breakdown of OH shoulder
- Quenched phase: **liquid-like** Raman spectra from quenched phase
- No new signatures from Raman, but continuum signature in IR

- [12] Goncharov *et al.*, Phys. Rev. Lett., **94** (2005)
 [27] Lin *et al.*, J. Chem. Phys, **121** (2004)
- [41] Lin et al., Geophys. Res. Let., 32 (2005)

- VDOS is not a valid substitute for Raman spectra: difference in O-H stretch frequency and incorrect in lower modes.
- First principles prediction of Raman spectra – excellent agreement with experiment. Also inter/intra breakdown of OH shoulder
- Quenched phase: **liquid-like** Raman spectra from quenched phase
- No new signatures from Raman, but continuum signature in IR

High P/T: Conclusions

- Investigated water under pressure at 11 GPa and 20 GPa, along the 1,000-K isotherm, using ab initio MD. Results consistent with a **lower melting line of Ice VII**
- Along the 1,000-K isotherm, liquid water exhibits rapid molecular dissociation events occurring via a bimolecular mechanism, which support an enhancement of ionic conductivity on the order of 6 and 7 orders of magnitude greater than ambient for 11, 20 GPa
- First **ab initio calculations of Raman spectra** at these conditions. No vibrational signatures of hydroxide and hydronium ions in Raman spectra, but signature in **continuum increase of IR spectra**

High P/T: Conclusions

4 Vignettes about Water

Statistically robust studies on monovalent ions in bulk water

Rozsa *et al.*, J. Chem. Phys, **152** (2020) Zeng, Rozsa, *et al.*, ACS Earth Space Chem., **3**, (2019)

Ab initio spectroscopy and ionic conductivity in water at high pressure and temperature

Rozsa et al., PNAS, 115, (2018)

Pure water and ion solutions under confinement in carbon nanotubes

Rozsa *et al.*, J. Chem. Phys, **152**, 6952 (2020)

The effect of monovalent ion solvation on water at high pressure and temperature

Rozsa *et al.*, J. Chem. Phys, **154** (2021)

HPHT Ions: Motivation

Rozsa et al., PNAS, 115, 6952 (2018)

- Planetary science: deep water, deep carbon, mineral solubility/transport
- Fundamental physics of hydrogen-bonded systems at extreme conditions
- Solvation properties of ions in highly dissociative water are virtually unexplored

LiF to 6 GPa, 1000 K:

Jahn et al., Geochim. Cosmochim. Acta, 73, (2009)

NaOH to 0.85 GPa, 700 K:

Stefanski et al., Phys. Chem. Chem. Phys, 33, (2018)

*MgSO*₄ to 1.4 *GPa*, 700 *K*:

Jahn et al., J. Phys. Chem. B, 33, (2010)

Structural Motifs in High P/T Water + Ions

 Li+ Solution: Formation of long-lived (~10s ps) H_xLiO₂ (x=2:4) complex

 K+, Cl- Solutions: Large ion solvation shells, no long-lived molecular species

Rozsa et al., J. Chem. Phys, 154 (2021)

Effect of ions on structure

- O-O structure is unaffected by ion solvation
- O-H structure, is unaffected by ion solvation
- O-MLWF structure is unaffected by ion solvation
- The effect of ions on structural properties of water, including dissociation, is minimal.

Effect of ions on structure

- O-O structure is unaffected by ion solvation
- O-H structure, is unaffected by ion solvation
- O-MLWF structure is unaffected by ion solvation
- The effect of ions on structural properties of water, including dissociation, is minimal.

Effect of ions on structure

- O-O structure is unaffected by ion solvation
- O-H structure, is unaffected by ion solvation
- O-MLWF structure is unaffected by ion solvation
- The effect of ions on structural properties of water, including dissociation, is minimal.

Changes to Ion Solvation Shells: Structure

- 20 ~0.1 Å А O-Li ~0.1 Å O-K ~0.75 Å O-Cl 15 $g_{0\text{-Ion}}(\mathbf{r})$ 5 r (Å)
- Li+ shifts to much smaller first shell

 corresponds to flanking oxygens of H_xLiO₂ (x=2:4)

 K+ and Cl- both have slightly smaller first shells, and behave very similar to each other with respect to the effect of high P/T

52

Changes to Ion Solvation Shells: Coordination /

- Li+ decreases from almost perfectly tetrahedral at ambient conditions to 2-coordinated (H_xLiO₂ (x=2:4))
- K+, Cl- greatly increase in coordination
 - N_{Cl-} +10, N_{K+} +8
 - Distributions have same shape (characteristic of shell "floppiness")

Unchanged Raman and IR

Infrared:

- Same **signatures of dissociation** (midfrequency continuum)
- No differences among ions dipole moment distributions not sensitive probe
- Raman:
 - No differences in OH stretching modes among ions
 - Overall no new spectroscopic signatures of new species, even the H_xLiO₂

Unchanged Raman and IR

Infrared:

- Same **signatures of dissociation** (midfrequency continuum)
- No differences among ions dipole moment distributions not sensitive probe
- Raman:
 - No differences in OH stretching modes among ions
 - Overall no new spectroscopic signatures of new species, even the H_xLiO₂

Molecular Polarizability

- Reduction in all molecular polarizabilities (~4%)
- Within a given ion solution, qualitative behavior of SS vs non-SS is similar to bulk
- Among ions, effect non-SS is same as bulk
- Molecular Polarizability
 continues to be a sensitive
 probe of perturbations,
 though changes are small

Dielectric Constant: Crucial to Geochem. Models

$$\varepsilon_0 = 1 + \frac{4\pi}{3k_BTV} \left(\left\langle \mathbf{M}^2 \right\rangle - \left\langle \mathbf{M} \right\rangle^2 \right)$$

The Helgeson-Kirkham-Flowers model for aqueous species requires **Gibbs free energy of formation of an aqueous species**, based on the Born function for the average Gibbs energy of solvation,

$$\Delta \overline{G}_{s,j} = \omega_j \left(\begin{array}{c} 1 \\ \overline{\varepsilon_0} \end{array} \right)$$

Where ω_i is the electrostatic Born parameter for ion *j*. ε_0 is the static dielectric constant of the solvating water

Helgeson et al., Am. J. Sci, 274, 1089 (1974)

Recent AIMD calculations of **pure water** ϵ_0 have allowed for a reparameterization of deep earth water models

Pan *et al.*, PNAS, **110**, 6646 (2013) Sverjensky *et al.*, Geoche et Cosm. Act., **129** (2014) "In real fluids containing mixed solvents, a **contribution from the dielectric constant of the mixed solvent** should be used in the non-standard state, extended-term contributions to the aqueous activity coefficient, e.g. an additional term ..."

```
Sverjensky., J. Geol. Soc. (2019)
```

Dielectric Constant: ε_0

$$\varepsilon_0 = 1 + \frac{4\pi}{3k_BTV} \left(\left\langle \mathbf{M}^2 \right\rangle - \left\langle \mathbf{M} \right\rangle^2 \right)$$

128 H₂O Pure (Pan, 2013) 60 w/Li+ w/K+w/ NaCl 20 20 40 60 0 Time (ps) Rozsa et al., J. Chem. Phys, 154 (2021

Ab initio prediction that pure water is an **upper limit on** ϵ_0 relative to solvated ions.

Consistent with empirical predictions from:

- NaCl: 6-12 GPa, 800-1100 K (Foustoukos, Chem. Geol. 447 (2016)
- C-O-H: 3 GPa, 1200 K (Galvez et al., Earth Planet. Sci. Lett 430 (2015)

Larger cells: consistent pattern in dielectric constants (K+ > Li+ > NaCl), though larger change for Li+ (~10% decrease) 57

Ionic Conductivity

$$\mathbf{M}(t) = e \cdot \sum_{i=1}^{N_H} \vec{R}_i^H(t) + 6e \cdot \sum_{i=1}^{N_O} \vec{R}_i^O(t) - 2e \cdot \sum_{i=1}^{N_{MLWF}} \vec{R}_i^{MLWF}(t)$$

$$\sigma = \lim_{t \to \infty} \frac{1}{6tk_b TV} \langle [\mathbf{M}(t) - \mathbf{M}(0)]^2 \rangle$$

Li+ σ = 3.8 (0.5) S/cm K+ σ = 4.2 (0.5) S/cm <u>NaCl</u> σ = 4.0 (0.6) S/cm

$\mathsf{Overall}\textbf{, all ions exhibit enhancement of }\sigma$

Enhancements are factor of 3 or 4 at most, and distinguishability between ions is difficult to establish

High P/T ions: Conclusions

- We have detailed analysis of how structures of how **solvation shells are altered** differently by high P/T. Global water structure RDFs are **unaffected by ions**
- Vibrational spectra (Raman/IR) show no new modes as signatures of ions or high P/T ionic species. However, VDOS shows signature spectra of suppressed vibrational spectrum of Li+ solvation shell, and K+/Cl- show qualitative similarities in their coupling to vibrational modes.
- Molecular polarizabilities are reduced across the board, though qualitative behavior of solvation shell waters is very similar to ambient conditions. Polarizability continues to be sensitive to perturbations.
- Dielectric constants of **pure HPHT water is an upper limit** for solvated ion solutions
- Conductivity is enhanced in high P/T solutions by no more than a factor of ~4.

Summary and General Conclusions

- To understand water at extreme conditions, need first principles theory
- Molecular polarizability is a consistently effective fingerprint of perturbations to water
- Demonstrated viability of computing ionic conductivity in liquids from first principles
- **IR, not Raman spectroscopy** detects changes changes due to water dissociation at high P/T
- **Resilience of water** to perturbations extreme conditions:
 - Ions at ambient have little global effect, and differences among ions are similar to bulk
 - At high P/T, no new vibrational modes despite big changes, ion solvation similarities to bulk properties

Acknowledgments

MICCo

Midwest Integrated Center for Computational Materials

Ding Pan, Anh Pham, Federico Giberti, Alex Gaiduk, Francois Gygi, Arin Greenwood, and many more

Giulia Galli

