<u>SSGF Program Review 2021</u> A Big Slice o' Pizza: Supernova Mixing in a Lab

Benjamin Musci

Sam Petter, Dr. Gokul Pathikonda, Dr. Britton Olson, and Dr. Devesh Ranjan

1

What happens when a Star dies?

Simulation

- Simulations don't' replicate Supernova observations
 - The occurrence of heavy elements ejecta occur much earlier than predicted

 \neq

- Also.... huge Clean Energy potential
 - Inertial Confinement Fusion
 - Mixing caused by compression degrades nuclear yield

Supernova, but make it Lab

- How? --Similar physics, different scales-- E.g
- Experimental facility (pizza) that uses explosives, lasers and gases to generate Supernova physics

The Physics : Mixing due to The Blast-Driven Instability

A Blast Wave Source

Two fluids separated by an interface

Blast-Driven Instability

The Physics : Mixing due to The Blast-Driven Instability

A Blast Wave Source

Two fluids separated by an interface

Blast-Driven Instability

The Physics : Mixing due to The Blast-Driven Instability

A Blast Wave Source

Two fluids separated by an interface

Blast-Driven Instability

The BDI combines two classic instabilities

• Both the RTI and RMI Instabilities develop at interface

Vorticity Transport Equation

Initial perturbations on the interface grow due to vorticity deposition

 $\frac{D\omega}{Dt} = (\omega \cdot \nabla)v - \omega(\nabla \cdot v) + v\nabla^2\omega \left(+ \frac{1}{\rho^2} (\nabla \rho \times \nabla p) \right)$ <u>Rayleigh-Taylor Instability</u> (RTI)

Criteria: $\nabla \rho \cdot \nabla p < 0$

<u>Richtmyer-Meshkov Instability</u> (RMI)

Atwood Number

 $\mathcal{A} = \frac{\rho_1 - \rho_2}{\rho_1 + \rho_2}$

Criteria:
$$\nabla \rho \cdot \nabla p \neq 0$$

The BDI combines two classic instabilities

- Both the RTI and RMI Instabilities develop at interface
- Initial perturbations on the interface grow due to vorticity deposition

Vorticity Transport Equation

$$\frac{D\omega}{Dt} = (\omega \cdot \nabla)\nu - \omega(\nabla \cdot \nu) + \nu \nabla^2 \omega \left(+ \frac{1}{\rho^2} (\nabla \rho \times \nabla p) \right)$$

<u>Rayleigh-Taylor Instability</u> (RTI)

<u>Richtmyer-Meshkov Instability</u> (RMI)

Atwood Number

 $\mathcal{A} = \frac{\rho_1 - \rho_2}{\rho_1 + \rho_2}$

The BDI combines two classic instabilities

- Both the RTI and RMI Instabilities develop at interface
- Initial perturbations on the interface grow due to vorticity deposition

Vorticity Transport Equation

$$\frac{D\omega}{Dt} = (\omega \cdot \nabla)v - \omega(\nabla \cdot v) + \nu \nabla^2 \omega \left[+ \frac{1}{\rho^2} (\nabla \rho \times \nabla p) \right]$$

Atwood Number

$$\mathcal{A} = \frac{\rho_1 - \rho_2}{\rho_1 + \rho_2}$$

Rayleigh-Taylor Instability (RTI)

<u>Richtmyer-Meshkov Instability</u> (RMI)

What is a "Blast Wave"

- Sudden deposition of energy in negligible time and space compared to scales of interest
- Shock front followed immediately by a rarefaction causes RMI and RTI combo

How we study BDI

Experiments

- Design and build facility
- High Speed diagnostics
- Extract mix data from images

Simulation

- Create digital twin of experiment
- Implement different models
- Validate simulations
 - Multi-stage validation

Experimental Facility/Pizza

• Uses commercial detonators (RP80 & RP81) to generate Blast Wave

Experimental Facility/Pizza

• Uses commercial detonators (RP80 & RP81) to generate Blast Wave

2 1 3 4 6 5

Interface Creation

- Heavy gas $(CO_2 white)$ enters from top
- Fan exhausts gas in middle and perturbs interface

 2π

Diagnostic used: Mie Scattering •

Experimental Parameter Sweep

- Explore instability behavior by varying two governing parameters:
 - Detonator strength (incident Mach number)
 - Atwood number (density difference)

Atwood Number

$$\mathcal{A} = \frac{\rho_1 - \rho_2}{\rho_1 + \rho_2}$$

Mach Number

Ma =

u_{blast}

sound speed

Parameter Space

Mach = 1.8 / *At* = varying

Mach = 1.8 / *At* = varying

At = 0.95 / Mach = varying

At = 0.95 / Mach = varying

Individual Bubble Analysis – Processing

Select several bubbles from each run → Track bubble with cross correlation → Detect maximum intensity gradient to trace interface shape → Extract mixed width data:

- Development tracked from IC to late time
- Allows for better characterization of a_o and λ

Individual Bubble Analysis – Processing

Select several bubbles from each run → Track bubble with cross correlation → Detect maximum intensity gradient to trace interface shape → Extract mixed width data:

- Development tracked from IC to late time
- Allows for better characterization of a_o and λ

Simulation

- Create simulation "digital-twin"
- Use experimental data to validate commonly used mix models: RANS and LES
- Initiated by SSGF summer practicum at LLNL with CSGF alum Britton Olson

Simulation tool: Pyranda

- Pyranda is the open-source proxy-app for the LLNL Miranda code
 - Same high-order numerical methods 10th order space / 4th order time
 - Available on github and constantly tested (https://github.com/LLNL/pyranda)
 - Python based and highly customizable for simple integration of new models
 - Domain, EOM, ICs, BCs
 - Has ability to use both RANS and iLES models

Python source for advection equation

High-level overview of work plan

- Framework for multi-fidelity verification of turbulent mixing models; RANS & LES.
- Staged approach to model validation:

Digital Twin – 2D Euler Simulation

- Boundary Condition: No reflections off walls
- Initial Condition: Large amount of energy released from small ball
- Model "losses" in experiment:
 - Boundary layer-based drag model

$$C_D = \frac{2C_{D0}\delta}{Width} \rightarrow \frac{d\delta}{dt} = a \, Re^b \, u_{mag}$$

• Optimize with non-mixing data

Digital Twin – 2D Euler Simulation

- Boundary Condition: No reflections off walls
- Initial Condition: Large amount of energy released from small ball
- Model "losses" in experiment:
 - Boundary layer-based drag model

$$C_D = \frac{2C_{D0}\delta}{Width} \rightarrow \frac{d\delta}{dt} = a \, Re^b \, u_{mag}$$

Optimize with non-mixing data

Euler Optimization

- Vary tuning parameters to maximize agreement with experimental data
- Tuning parameters:
 - Drag coefficient
 - Initial pill energy

- Experimental comparison:
 - Match pressure signal at probes
 - Match flat interface trajectory

- Optimize:
 - Gaussian Process to minimize error
 - Test and predict optimal parameters

$$C_D = \frac{2C_{D0}\delta}{Width}$$

$$\rightarrow \frac{d\delta}{dt} = a \, Re^b \, u_{mag}$$

• Optimized parameters are set as constants for use in mix models

Euler Optimization

• Vary tuning parameters to maximize agreement with experimental data

- Tuning parameters:
 - Drag coefficient
 - Initial pill energy

- Experimental comparison:
 - Match pressure signal at probes
 - Match flat interface trajectory

- Optimize:
 - Gaussian Process to minimize error
 - Test and predict optimal parameters

Optimized parameters are set as constants for use in mix models

Euler Optimization

• Vary tuning parameters to maximize agreement with experimental data

- Tuning parameters:
 - Drag coefficient
 - Initial pill energy

- Experimental comparison:
 - Match pressure signal at probes
 - Match flat interface trajectory

Optimize:

58000 60000 62000 64000 66000

Initial Energy (I)

- Gaussian Process to minimize error
- Test and predict optimal parameters

0.220

0.208

0.196

0.184

0.172

0.160

0.148

0.136

0.124

0.112

Error

Optimized parameters are set as constants for use in mix models

Simulation Results

RANS Results

- "k-L" model in RANSBOX library
- Written by Brandon Morgan of LLNL

LES Results

- Use hybrid 2D/3D domain
- AFLES method of Miranda

State Contraction

Simulation Results

RANS Results

- "k-L" model in RANSBOX library
- Written by Brandon Morgan of LLNL

LES Results

- Use hybrid 2D/3D domain
- AFLES method of Miranda

Contraction of the second

Questions