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What happens when a Star dies?

Simulation

Observation
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» Simulations don’t’ replicate Supernova observations
* The occurrence of heavy elements ejecta occur much earlier than predicted

* Also.... huge Clean Energy potential
- Inertial Confinement Fusion

+  Mixing caused by compression degrades
nuclear yield




Supernova, but make it Lab

How? --Similar physics, different scales-- E.g

Experimental facility (pizza) that
uses explosives, lasers and gases
to generate Supernova physics



he Physics : Mixing due to The Blast-Driven
Instability

A Blast Wave Source
Two fluids separated by an interface
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The BDI combines two classic instabilities

Both the RTI and RMI Instabilities develop at interface
Initial perturbations on the interface grow due to vorticity deposition

Vorticity Transport Equation Atwood Number
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What is a “Blast Wave”
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Sudden deposition of energy in negligible time and space compared to scales of interest

Shock front followed immediately by a rarefaction — causes RMI and RTI combo
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How we study BDI

Experiments

Design and build facility
High Speed diagnostics

Extract mix data from images

Simulation

Create digital twin of experiment
Implement different models

Validate simulations
Multi-stage validation
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Experimental Facility/Pizza

Uses commercial detonators (RP80 & RP81) to generate Blast Wave
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1. Plastic molded head

2. Brass sleeve

3. Bridgewire (Gold)

4. Initiating explosive: 80 mg PETN
5. Output explosive: 123 mg RDX
6. Aluminum cup 0.007 " thick

10-11" »
(254-279) 0.87 -




Experimental Facility/Pizza

Uses commercial detonators (RP80 & RP81) to generate Blast Wave

Owverpressure [psi]

13

1. Plastic molded head
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Interface Creation

Light gas (N, — black) enters from bottom
Heavy gas (CO, — white) enters from top

Fan exhausts gas in middle and perturbs interface

., @

~ wavelength

Diagnostic used: Mie Scattering

~ Single mode

Multi-mode

a, = EPeak to valley

Large amplitude
Incident Mach
number (Ma) = 1.5
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Experimental Parameter Sweep

Explore instability behavior by varying two governing parameters:
Detonator strength (incident Mach number)
Atwood number (density difference)

Parameter Space
Atwood Number
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Mach = 1.8 / At = varying

Increasing At
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At = 0.95 / Mach = varying

Increasing Mach
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Individual Bubble Analysis — Processing

Select several bubbles from each run = Track bubble with cross correlation =2 Detect
maximum intensity gradient to trace interface shape - Extract mixed width data:

Development tracked from
IC to late time

Allows for better
characterization of a, and 4
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Simulation

Create simulation “digital-twin”

Use experimental data to validate commonly used mix models:
RANS and LES

Initiated by SSGF summer practicum at LLNL with CSGF alum
Britton Olson
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Simulation tool: Pyranda

Pyranda is the open-source proxy-app for the
LLNL Miranda code Python source for advection equation

import sys

Same high-order numerical methods - 10t order inport tine

import numpy

space / 4™ order time fron pyranda inport. pyrandasie:
Available on github and constantly tested fonain = "xdon = (6.0 ; 1.6 , 100 )"

(https://github.com/LLNL/pyranda) # Initialize o simlation sbject on o mest
Python based and highly customizable for simple PysimiEOM (" datapnit) = roe s ddx(:phit) ) ‘
integration of new models # Initialize varisbles

ic = muw
:phi: = 1.0 + 0.1 % exp( —(abs(meshx-.5)/.1 )#%x2 )

Domain, EOM, ICs, BCs iphio: — ipni:

H o
nn

Scalar vs. x at
initial/final

Has ability to use both RANS and iLES models # Integrate in time times

time = 0.0
while time < .1:
time = pysim.rk4(time,dt)

0 / 0
—U = —C—U

Ot ox

pysim.setIC(ic)

GitHub
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High-level overview of work plan

Framework for multi-fidelity verification of turbulent mixing models; RANS & LES.

Staged approach to model validation:

Experimental Data Legend
Interface Trajectory Pressure Profiles Data Comparison
Optimized Parameter
L [ | | I I J
Models

2D Euler

I RANS P LES*
@ Drag Coefficient -

Turbulent Kinetic Energy @ Initial Conditions

D slast Energy ﬁ

nputs for
mixing
models

Mixing Models

d
P Turbulent Length Scale
6

RM Growth Exponent * Ensemble Validation

Inter-model comparison



Digital Twin — 2D Euler Simulation

Boundary Condition:
No reflections off walls

Initial Condition:
Large amount of energy released from small ball

Model “losses” in experiment:
Boundary layer-based drag model

= — =a Re” u
D ™ widtn dt mag

Optimize with non-mixing data

Foam BC

Energy Pill / Det
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Digital Twin — 2D Euler Simulation

Boundary Condition:
No reflections off walls

Initial Condition:
Large amount of energy released from small ball

Foam BC

Model “losses” in experiment: Energy Pill / Det

Boundary layer-based drag model

= — =a Re” u
D ™ widtn dt mag

Optimize with non-mixing data
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Euler Optimization

Vary tuning parameters to maximize agreement with experimental data

Tuning parameters: Experimental comparison: Optimize:
Drag coefficient Match pressure signal at probes Gaussian Process to minimize error
Initial pill energy Match flat interface trajectory Test and predict optimal parameters
__ 2Cpgo
D™ wiatn

ds b

Optimized parameters are set as constants for use in mix models



Euler Optimization

Vary tuning parameters to maximize agreement with experimental data

Tuning parameters:
Drag coefficient
Initial pill energy
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Over-pressure (Psi)
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Experimental comparison:

Match pressure signal at probes
Match flat interface trajectory

Interface Location (m)
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Optimize:
Gaussian Process to minimize error
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Test and predict optimal parameters

0.000

0.001

Optimized parameters are set as constants for use in mix models
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Euler Optimization

Vary tuning parameters to maximize agreement with experimental data

Tuning parameters: Experimental comparison: Optimize:
Drag coefficient Match pressure signal at probes Gaussian Process to minimize error
Initial pill energy Match flat interface trajectory Test and predict optimal parameters
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o ::bOJQG
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0.15 - -
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Optimized parameters are set as constants for use in mix models Initial Energy ()



Simulation Results
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RANS Results
“k-L” model in RANSBOX library
Written by Brandon Morgan of LLNL

Prsucioc cilon
vier: h
1000

= 0750
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0.2510 ]
1.351e08 ]

Mieme: 1000
Kire -1 35) 06

LES Results
Use hybrid 2D/3D
domain

AFLES method of
Miranda
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Simulation Results

RANS Results LES Results g

“k-L” model in RANSBOX library Use hybrid 2D/3D

Written by Brandon Morgan of LLNL domain
o e AFLES method of
-:0.7500 ; __ = 5 _74 ‘ ': Miranda

05000 - %
0,250

- 2N w05
e 1,000
1A <1, 20de-05

0,090

Meax;
W -0, 1185




Questions
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