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Gravitational waves: spacetime ripples that allow us to probe the

Universe in an entirely new way.

The Gravitational-Wave Spectrum:

guantum fluctuations in the very early Universe
 Stellar astrophysics
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How do such gravitational-wave sources form? Stellar-mass black
holes and neutron stars arise from the deaths of massive stars.
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Gravity is weak at large separations. Binary interactions are essential

for forming double NSs that merge within the age of the Universe.

Isolated binary formation channel for double NSs:
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Common-envelope evolution: orbital decay driven by gravitational drag. If

the envelope is successfully ejected, a compact binary eventually forms.
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Various approaches have been used to model common-envelope

evolution. Population studies often use the analytic model.

— Model complexity —

Analytic model: Semi-analytic Radiation Radiation hydro
o AE. goes into model: hydro in 1D: in 3D:
envelope ejection , , ,
PES) Inspiral driven by local Envelope back-reaction
(e.g., Webbink 1984). . .
drag forces. from NS inspiral:
log(Density [gr/cm?])
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Towards multiscale multiphysics:
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What happens to neutron stars that undergo

common-envelope evolution?

e Neutron stars don’t accrete enough
material to exceed their maximum

MassS (MacLeod & Ramirez-Ruiz 2015). Captured\l

material

 How do neutron-star properties and
thus its equation of state (EoS) affect
how it accretes?
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 Since neutron stars are compact, they
have substantial binding energy.




The NS interior can achieve supra-nuclear densities. The dense-

matter equation of state determines NS macroscopic properties.

Mass-radius curves with different EoSs.
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NSs have substantial binding energy, i.e., ~10% of the total mass-

energy budget.
NS interior structure: Analogy: atomic nucleus
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Some fraction of what a NS accretes gets converted into binding

energy instead of gravitational mass.

Gravitochemical potential vs. gravitational
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Common-envelope inspiral is a multiscale multiphysics problem. We

evolve a NS using semi-analytic models at different length scales.
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Models for the primary massive star, NS inspiral, baryonic-mass

accretion, gravitational-mass gain, and spin-up:

NS accretion

Primary radius Envelope
NS core Orbital separation
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Length scale [R;]

Generate primary massive-star 1 Generate tables of NS

Stellar properties: models with MESA properties for each EoS

Orbit integration and NS evolution:

Compute baryonic Compute NS gravitational
T mass gain and spin-up

Eorb = _Fdragvorb Mb — Mb(Ma q, Rsink) MNS — (DMb T C_ZJ

Common-envelope NS 4
inspiral via local drag forces mass accretion




NSs with smaller radii spin-up faster and gain less gravitational mass. More

massive NSs gain less gravitational mass.
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Is there feedback? Accretion onto a compact object may result in

outflows. Would such outflows aid in envelope ejection?
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Double Neutron Star Origins: The Interplay of Strong Gravity,

Nuclear Microphysics, and Macroscopic Astrophysics.

* Gravitational waves from merging compact binaries can provide new insights
on astrophysics, gravitational physics, nuclear physics, particle physics, etc.

* Because gravity is weak at large separations, macroscopic astrophysical
interactions are necessary to form compact binaries.

e Neutron stars have substantial binding energy and thus gain less gravitational
mass than what they accrete.

e Strong gravity and nuclear microphysics may affect the population properties
of double neutron stars and the rate at which they merge across the Universe.
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