Nanoscale mechanics of ultrathin polymer films using molecular dynamics

Brooklyn A. Noble

Nanotribology and Precision Engineering Laboratory Department of Mechanical Engineering University of Utah June 26, 2019

Ultrathin polymer film applications

Surface modification:

Antifouling surfaces

Micro/Nanofluidics:

Lab-on-a-chip

Kovo (2015)

Thin film lubrication: HDDs and micromotors

www.wdc.com

Tanner et al. (2000)

Nanoscale spreading

How a polymer-based liquid film interacts with and adsorbs onto a surface determines properties critical to performance:

Research topics:

- (1) Spreading morphology
- (2) Spreading kinetics
- (3) Spreading on nanotextured substrates

Overview

Spreading morphology

- Background and MD model
- Quantify thickness profile
 - Functional group layering
- Conclusions

Spreading kinetics

- Background and MD model
- Quantify droplet edge radius
 - Droplet pressure and molecular entanglement
- Conclusions

Spreading on nanotextured substrates

- Background and MD model
- Quantify anisotropic spreading
 - Substrate energy potentials
- Conclusions

Questions

Overview

Spreading morphology

- Background and MD model
- Quantify thickness profile
 - Functional group layering
- Conclusions

Spreading kinetics

- Background and MD model
- Quantify droplet edge radius
 - Droplet pressure and molecular entanglement
- Conclusions

Spreading on nanotextured substrates

- Background and MD model
- Quantify anisotropic spreading
 - Substrate energy potentials
- Conclusions

Questions

Spreading morphology background

Experiments

- **Functional PFPE lubricants**
- Observe a precursor film (foot) and a complex stepped (terraced) structure at:
 - 2.2 nm
 - 6.4 nm
 - 9.8 nm

5

10

Film Thickness (σ)

15

20

0.4

0.2

0.0

MD simulations

- Functional hydroxyl end groups conglomerate into molecular layers
- Functional hydroxyl end group density varies with distance from the surface
- Dependent on polymer length

MD polymer model

MD coarse-grained bead-spring (CGBS) model with *N* beads **Perfluoropolyether (PFPE) polymers:**

Spreading morphology MD model

- Polymer equilibrates between two walls
- Walls are removed and polymer spreads for 250 ns
- We quantify:
 - Polymer thickness profile
 - Location of end beads
 - Molecular orientation

B. A. Noble, A. Ovcharenko, and B. Raeymaekers. Polymer 84, 286-292 (2016)

Parameters:

Z or Zdol polymer

12090 1200

1 < N < 50 beads/molecule

Quantify spreading morphology

- Observe foot and terrace formations in polymer thickness profile
- Foot formation at:
 - $\circ y/\sigma = 3$
 - $\circ y = 2.1 \text{ nm}$
- Two terrace formations at:
 - $y/\sigma = 8.5$ and 13.5
 - y = 6.0 nm and 9.5 nm
- In good agreement with experimental observations where steps occur at: y = 2.2 nm, 6.4 nm, and 9.8 nm

X. Ma, et al. Phys. Rev. E 59, 722 (1999)
G. W. Tyndall, T. E. Karis, and M. S. Jhon. Tribol. T. 42, 463 (1999)

End bead layers

- Observe molecular layering indicated by three horizontal bands of conglomerated end beads
- These areas of high end bead density occur at:
 - $\circ y/\sigma = 1$
 - $\circ y/\sigma = 5.5$
 - $\circ y/\sigma = 10.5$
- Terrace formations form around end bead layers

Effect of polymer quantity Q

- End bead density peaks occur for all polymer quantities of Zdol
- Peaks occur at approximately the same *y*-coordinate values
- Distance between peaks is constant and is approximately equal to the molecule length
- Initial peak is observed near the substrate for both Z and Zdol, corresponding to a foot formation

Spreading morphology conclusions

Main observations:

- The quantity and location of high end bead density layers correspond to the quantity and location of terraced formations
- Polymer quantity affects the number of layer and terrace formations
- Molecule length affects the location of layer and terrace formations

Overview

Spreading morphology

- Background and MD model
- Quantify thickness profile
 - Functional group layering
- Conclusions

Spreading kinetics

- Background and MD model
- Quantify droplet edge radius
 - Droplet pressure and molecular entanglement
- Conclusions

Spreading on nanotextured substrates

- Background and MD model
- Quantify anisotropic spreading
 - Substrate energy potentials
- Conclusions

Questions

Spreading kinetics background

Y. C. Liao et al. Phys. Rev. Lett. 111, 136001 (2013)

C. M. Mate Tribol. Lett. 51, 385 (2013)

Department of Mechanical Engineering COLLEGE OF ENGINEERING | THE UNIVERSITY OF LITAL

Spreading kinetics MD model

 D_{pipet}

- Polymer equilibrates within a cylindrical pipet
- Pipet is removed and polymer spreads for 250 ns
- We quantify:
 - Droplet edge radius
 - Central droplet pressure
 - Molecular entanglement

- Nonfunctional polymer
- Functional substrate
- Nonfunctional substrate

B. A. Noble, C. M. Mate, and B. Raeymaekers. Langmuir 33.14, 3476-83 (2017)

r

Quantify spreading kinetics

✓ Short molecules

• x

 ✓ Functional or nonfunctional polymer

Z, N = 10, Q = 10,000

✓ Nonfunctional substrate

Droplet pressure

Molecular entanglement

Molecular entanglement

Spreading kinetics conclusions

The leading edge of a liquid polymer droplet advances as a power law $R \sim t^{\nu}$ with:

- (1) One regime according to microscale droplet theory: $\nu \approx 1/3 = 0.27$ -0.38
- (2) Two successive regimes: $\nu \approx 1/3 = 0.27 \cdot 0.35 \longrightarrow \nu \approx 1/10 = 0.10 \cdot 0.16$
- (3) One regime according to Tanner's theory: $\nu \approx 1/10 = 0.11-0.16$

We attribute the transition to competing physical mechanisms:

- Pressure difference in the droplet
 - Vanishes if central droplet depletes
- Entanglement of molecules
 - Long molecules constrict around entangled regions
- Functional attraction
 - Functional molecules pin on a functional substrate

Overview

Spreading morphology

- Background and MD model
- Quantify thickness profile
 - Functional group layering
- Conclusions

Spreading kinetics

- Background and MD model
- Quantify droplet edge radius
 - Droplet pressure and molecular entanglement
- Conclusions

Spreading on nanotextured substrates

- Background and MD model
- Quantify anisotropic spreading
 - Substrate energy potentials
- Conclusions

Questions

20

Nanotextured substrates background

Nature's textured substrates

Pitcher plant

M. Cao *et al. ACS Appl. Mater. Interfaces* **8.6**, 3615-23 (2015) X. Dai *et al. ACS Nano* **9.9**, 9260-7 (2015) L. Feng *et al. Langmuir* **24**, 4114-9 (2008) K. Khare *et al. Langmuir* **25**, 12794-9 (2009)

Engineered textured substrates

- Droplet spreads mostly along grooves
- Perpendicular contact line experiences the presence of energy barriers imposed by the texture
- Anisotropic spreading is affected by the texture size and polymer molecular weight

Nanotextured MD model

- Polymer equilibrates within a cylindrical pipet
- Pipet is removed and polymer spreads for 200 ns
- We quantify:
 - Polymer spreading parallel and perpendicular to the texture
 - Potential energy created by each substrate

OLLEGE OF ENGINEERING | THE UNIVERSITY OF UTAL

Nanotextured MD model

- Polymer equilibrates within a cylindrical pipet
- · Pipet is removed and polymer spreads for 200 ns
- We quantify:
 - Polymer spreading parallel and perpendicular to the texture
 - Potential energy created by each substrate

- Nonfunctional polymer
- Functional substrate
- Nonfunctional substrate

B. A. Noble and B. Raeymaekers. Nanotechnology 30.9, 095701 (2019)
 B. A. Noble and B. Raeymaekers. Langmuir (2019)

Anisotropic spreading in a single groove

Polymer spreading parallel d_{\parallel} and perpendicular d_{\perp} to the groove as a function of texture geometry

Anisotropic spreading on multiple features

Substrate potential energy

Nanotextured substrates conclusions

Main observations:

- Texture groove shape is the primary factor that modifies polymer spreading on unidirectionally nanotextured surfaces
- Texture groove shape determines the minimum potential energy of a substrate
- At the texture groove, the energy potentials of several surfaces combine, which increases polymer attraction and drives spreading along the texture groove.

Achievements

- Journal publications:
 - Noble, B. A. and B. Raeymaekers. "Polymer spreading on unidirectionally nanotextured surfaces using Molecular Dynamics." *Langmuir* Article ASAP (2019).
 - Noble, B. A. and B. Raeymaekers. "Polymer spreading on substrates with nanoscale grooves using molecular dynamics." *Nanotechnology* 30.9 (2019): 095701.
 - Noble, B. A., C. M. Mate, and B. Raeymaekers. "Spreading kinetics of ultrathin liquid films using molecular dynamics." *Langmuir* 33.14 (2017): 3476-3483.
 - Noble, B. A., A. Ovcharenko, and B. Raeymaekers. "Terraced spreading of nanometer-thin lubricant using molecular dynamics." *Polymer* 84 (2016): 286-292.
 - Noble, B. A., A. Ovcharenko, and B. Raeymaekers. "Quantifying lubricant droplet spreading on a flat substrate using molecular dynamics." *Applied Physics Letters* 105.15 (2014): 151601.
- Conference presentations:
 - <u>Noble, B. A.</u> and B. Raeymaekers. "Spreading of ultrathin polymer films on nanotextured substrates using Molecular Dynamics." STLE Annual Meeting. Minneapolis, MN, 21 May 2018.
 - <u>Noble, B. A.</u> and B. Raeymaekers. "Spreading Kinetics of Ultrathin Liquid Films Using Molecular Dynamics." STLE Annual Meeting. Atlanta, GA, 24 May 2017.
 - <u>Noble, B. A.</u> and B. Raeymaekers. "Terraced spreading of nanometer-thin lubricant using molecular dynamics." STLE Tribology Frontiers Conference. Denver, CO, 26 Oct. 2015.
 - <u>Noble, B. A.</u> and B. Raeymaekers. "Quantifying lubricant droplet spreading on a flat substrate using molecular dynamics.," STLE Annual Meeting. Dallas, TX, 20 May 2015.

Acknowledgements

Questions

