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 High Explosives (HEs) and their detonation properties have been an important field of study 

following WWII.

 High explosives refer to explosive materials that detonate (i.e. supersonic shock fronts pass through material.

VS.

 Low explosives are subsonic Flame front propagated by deflagration.

 Applications include:

 Insensitive High Explosives

• Palomares B-52 Plane Crash, 1966

What are High Explosives?

• Solid rocket propellants

• Insensitive munitions

• Tunnel construction

• Demolition

• Explosives in nuclear weapons
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Explosive Grains

 HMX

 RDX

 PETN

 TATB

 HNS

 Primarily composed of 2 or 3 parts:

• Explosive Grains

• Brittle fracture under low pressure

• Plastic deformation under high 

pressure

• Binder

• Bonding between constituents

• Viscoelastic behavior

• Low stiffness

• Additives

• Low sensitivity

Polymer Bonded Explosive (PBX)

PBX 9501

Binder Systems

 Estane

 Viton

 HTPB

 Kel-F 800

 Polyurethane

Rae et al., 2002. 

Additives

 Aluminum

 Ammonium Perchlorate 

(AP)

 Wax

 Inert Materials

PBX constituents



4
How do PBXs detonate?

Impact

Mechanical 

Dissipation Temperature

Rise

Shock Wave

Chemical

Initiation Detonation

Wave

• Flyer driven

• Laser driven • Plastic flow

• Friction

• Pore collapse

Hotspots develop

HMX Decomposition

Possible quenching due 

to rarefaction wave

Modeling shock with void 

in Fortran using Navier-

stokes equations

Ha et al., 2015.
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Development of Hotspots

 Mechanical failure and interactions

– Inter-granular interactions

– Trans-granular fractures

– Debonding at grain-binder interface

 Defects in microstructures

– Imperfectly bonded interfaces

– Voids (Micropores)

 Shear bands (plastic flow)

– Localized heating along 

crystallographic slip planes

Fracture path

Rae et al., 2002. 

Voids in RDX

Czerski et al., 2007
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CODEX Approach for Predicting Probabilistic Ignition Behavior of HEMs



7

 Microstructural Effects
 Code is optimized to study the effects 

of mesoscale microstructural variables 

including the following:
• Microstructural heterogeneities

• Debonding

• Cracking

• Particulates

• Interfaces

• Various Types of dissipation

Types of Microstructures Used

0% grain cracks 10% grain cracks 20% grain cracks

1 mm 1 mm 1 mm

0% debonded 50% debonded 100% debonded

1 mm 1 mm 1 mm

0.5 mm

d = 35 μm

d = 220 μm

Transgranular

crack

Intact 

grain 

boundary

• Elasto-viscoplasticity

• Viscoelasticity

• Hyperelasticity

 Dissipation Mechanisms

• Fracture

• Friction

• Heat transfer

PBX, Aluminized PBX

1 mm

Granular EM Beds

Transgranular Cracks Debonding
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Massive Anvil 

SpecimenUp

6 mm

3 mm

* May and Tarver, AIP Conf. Proc. 1195, 275 (2009)

CODEX Setup

Bulk element

Cohesive element

Initially zero area

for cohesive element

Bilinear traction-separation Cohesive energy

Element configuration (bulk/cohesive element)

Cohesive FEM Loading Conditions
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Up = 500 m/s, tpulse = 280 ns, 6% Al

Temperature Field Evolution (high flyer velocity)

Syy (MPa) Temp (K)

Stress Profile Temperature Profile t 
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Determination of Ignition Likelihood via Hotspot Risk Analysis

 Hotspot Ignition Risk Determinant (HIRD)

• Allows determination of criticality states of 

hotspots using a hotspot size-temperature 

ignition threshold

 Ignition criterion for individual hotspots 

(Barua et al. 2013)

• d (T) ≥ dc (T)

 Ignition criterion for microstructure

• If the density of hotspots exceeds 0.22 mm-2

at any point during the simulation. The 

sample is assumed to reach criticality.

10
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Aluminized PBX Sensitivity Map
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 Higher volume fractions of 

aluminum are less sensitive.

James Parameters are fit to 50% 

ignition threshold.

Entire probability distribution can 

be obtained via James parameters
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Heat Generation in HMX
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 Friction generates 

more localized heat 

than plastic work

 Plastic work is 

responsible for the 

entire sample heating 

up, but not individual 

hotspots. 
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Effect of Aluminum on Fracture

 Total amount of cracks 

are similar between 

samples of varying Al 

concentration.

 When normalized to the 

relative amount of 

HMX, less HMX-

associated cracks occur.

 Samples with smaller Al 

particles generate more 

cracks.

 When normalized to the 

relative surface area of 

aluminum, the proliferation 

of cracking is the same.

13
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How do we consider detonation and 

void collapse?

14
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How do we consider detonation and 

void collapse?

CTH – An Eulerian Hydrocode

15



2D Microstructure-explicit/Voids-explicit Models (ME-VE-M)

 ME-VE models (cases studied)

Homogeneous (H)

Microstructure Only (H)

Voids Only (V, ~50 µm)

Voids + Microstructure (V+M)

 Statistically equivalent microstructure 

sample sets (SEMSS)
• Grains have monomodal size distribution with average size of 220 

µm.

• SEMSS emulate experiments and allow evaluation of 

probabilistic/statistical nature of behavior.

 Microstructure effects
• Grains have random variations density ρ * 

3

2 1.902g cm 

3

1 2.473g cm 

3

3 1.331g cm • Hardin, Rimoli, and Zhou, Thermochim Acta 2014, AIP Advances; 4,

097136 (2014)

SEMSS

1816



Simplified Steinberg–Guinan–Lund (SGL) flow stress model
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History Variable Reactive Burn (HVRB) chemistry model

Mie-Grüneisen equation of state (MG-EOS)
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Computational Framework
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 Simulations performed using CTH – an Eularian-based hydrocode from 

SNL.

 Mesh convergence study performed.
• Samples have both microstructure and 50 µm voids.

• Pressure converges more quickly than run distance (20 µm element vs. 5 µm element ). 

• Final mesh resolution of 5 µm chosen.

 A size comparison is needed to determine whether the samples are 

representative of a real size microstructure.
• There is no significant discrepancy between 1×5 mm microstructures and 3×15 mm microstructures 

Mesh resolution                                            Sample size

2018



Shock to Detonation Transition (SDT)

P (GPa)

Microstructure

0 5 10 15
Distance (mm)

Homogenous

Voids

Microstructure and Voids

UP = 600 ms-1 (aluminum flyer), 30% MS variation

2119
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Effect of Voids on PP
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Effects of Microstructure and Voids

Statistical Data Sets from SEMSS

HMX Sample Set

Average Decrease in Run 

Distance (compared to 

uniform)

Microstructure 12.2%

5% Voids 20.1%

5% Voids + 

Microstructure
27.5%

• Heterogeneities (microstructure, voids) enhance SDT 

sensitivity (shortens run distance or lowers PP line) 

• Microstructure = constituent and morphological 

heterogeneities

• Voids = Geometric heterogeneities

2521
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 Step 1: Pop plot fits are generally based on a power law relationship

 Step 2: Introduce a Non-dimensional Pop plot number (PPN) to 

gauge distance from PP

 Step 3: Create a probability formulation using a log-normal CDF

 Step 4:Write in terms of physical parameters (shock pressure and 

run distance)

Probability formulation
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Comparison with Experiments
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modeling on low density HMX." Journal of Physics: Conference Series. Vol. 500. No. 5. IOP Publishing, 2014.

2) Baytos, John F. LASL explosive property data. Vol. 4. Univ of California Press, 1980.
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 Model trends match those seen in 

experiment.

 This model only represents a first 

approach at predicting SDT on a mm size 

scale.

 Further calibration of the HVRB or a 

transition to an Arrhenius-based chemical 

reaction rate model will be required.
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3D Microstructure-explicit/Voids-explicit Models (ME-VE-M)
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 Simulations performed using CTH – an Eularian-based hydrocode from SNL.
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ME-VE-Simulations of Shock to Detonation Transition (SDT)
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Pressure Fields: Horizontal (H) Sections

H1

H2

H3

[Gpa]

[Gpa]

[Gpa]

[mm]

[mm]

[mm]

H1
H2
H3

31



38



39



2D-3D Comparison

 Microstructure only case is chosen.

 There is overall agreement between the 2D and 3D

results.

 2D have more scatter than 3D, indicating that a single or

smaller number of 2D runs may not accurately describe

material behavior.

32



Probability Map Comparison
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 MES (microstructure-explicit simulations) at mm size scales

allow essential material effects to be captured for prediction

of real material behavior.

 SEMSS allow prediction of probabilistic behavior assessment

and UQ.

 Analytical relations for macroscopic behavior as functions of

material structure for performance and sensitivity are being

established and can be used for EM design.

Summary 34
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