

Effects of Microstructure and Chemistry on Ignition Sensitivity of Polymer-bonded Explosives Under Shock Loading

Christopher Miller, Min Zhou

Labmates: Daniel Olsen, Yaochi Wei, Ushasi Roy, Amirreza Keyhani, Jay Shin, Seokpum Kim

Georgia Institute of Technology

SSGF Program Review, June 26, 2019

Support by DTRA and SSGF

The George W. Woodruff School of Mechanical Engineering The School of Materials Science and Engineering

What are High Explosives?

High Explosives (HEs) and their detonation properties have been an important field of study following WWII.

> High explosives refer to explosive materials that detonate (i.e. supersonic shock fronts pass through material.

VS.

> Low explosives are subsonic \rightarrow Flame front propagated by deflagration.

- > Applications include:
 - Solid rocket propellants
 - Insensitive munitions
 - Tunnel construction
 - **Demolition**
 - Explosives in nuclear weapons
- Insensitive High Explosives
 - Palomares B-52 Plane Crash, 1966

Polymer Bonded Explosive (PBX)

- Primarily composed of 2 or 3 parts:
 - Explosive Grains
 - Brittle fracture under low pressure
 - Plastic deformation under high pressure
 - Binder
 - Bonding between constituents
 - Viscoelastic behavior
 - Low stiffness
 - Additives
 - Low sensitivity

Rae et al., 2002.

PBX constituents

Explosive Grains	Binder Systems	Additives
> HMX	Estane	Aluminum PBX 9501
> RDX	> Viton	Ammonium Perchlorate
> PETN	➢ HTPB	(AP)
> TATB	➢ Kel-F 800	> Wax
> HNS	Polyurethane	Inert Materials

How do PBXs detonate?

Development of Hotspots

- Mechanical failure and interactions
 - Inter-granular interactions
 - Trans-granular fractures
 - Debonding at grain-binder interface

Defects in microstructures

- Imperfectly bonded interfaces
- Voids (Micropores)
- > Shear bands (plastic flow)
 - Localized heating along crystallographic slip planes

Fracture path

Czerski et al., 2007

Voids in RDX

CODEX Approach for Predicting Probabilistic Ignition Behavior of HEMs

Types of Microstructures Used

1 mm

Microstructural Effects

- Code is optimized to study the effects of mesoscale microstructural variables including the following:
 - Microstructural heterogeneities ٠
 - Debonding ٠
 - Cracking ٠
 - **Particulates** ٠
 - Interfaces
 - Various Types of dissipation ٠

Dissipation Mechanisms

- Elasto-viscoplasticity
- Viscoelasticity
- Hyperelasticity

- Fracture ٠
- Friction •
- Heat transfer ٠

1 mm

CODEX Setup

* May and Tarver, AIP Conf. Proc. **1195**, 275 (2009)

Temperature Field Evolution (high flyer velocity)

 $U_p = 500 \text{ m/s}, \Delta t_{\text{pulse}} = 280 \text{ ns}, 6\% \text{ Al}$

Temperature Field Evolution (high flyer velocity)

 $U_p = 500 \text{ m/s}, \Delta t_{\text{pulse}} = 280 \text{ ns}, 6\% \text{ Al}$

Temperature Field Evolution (high flyer velocity)

 $U_p = 500 \text{ m/s}, \Delta t_{\text{pulse}} = 280 \text{ ns}, 6\% \text{ Al}$

Hotspot Ignition Risk Determinant (HIRD)

- Allows determination of criticality states of hotspots using a hotspot size-temperature ignition threshold
- Ignition criterion for individual hotspots (Barua *et al.* 2013)
 - $d(T) \ge d_c(T)$
- > Ignition criterion for microstructure
 - If the density of hotspots exceeds 0.22 mm⁻² at any point during the simulation. The sample is assumed to reach criticality.

Aluminized PBX Sensitivity Map

Heat Generation in HMX

Effect of Aluminum on Fracture

Crack Density in HMX (mm/mm²) Total amount of cracks \geq 15 Crack Density (mm/mm²) 10% Al are similar between (b) (a) 0% Al 6 samples of varying Al %Al 10 10% Al concentration. 5 When normalized to the \geq relative amount of =1000ms $U_p = 1000 m s^{-1}$ HMX, less HMX-0 0.02 0.04 0.06 0.02 0.04 0.06 0 associated cracks occur. Energy Fluence (kJ/cm²) Energy Fluence (kJ/cm²)

How do we consider detonation and void collapse?

How do we consider detonation and void collapse?

2D Microstructure-explicit/Voids-explicit Models (ME-VE-M)

Voids Only (V, $\sim 50 \,\mu m$)

Voids + Microstructure (V+M)

Statistically equivalent microstructure sample sets (SEMSS)

- \bullet Grains have monomodal size distribution with average size of 220 $\mu m.$
- SEMSS emulate experiments and allow evaluation of probabilistic/statistical nature of behavior.

> Microstructure effects

- Grains have random variations density $\rho \ *$
 - Hardin, Rimoli, and Zhou, *Thermochim Acta* **2014**, AIP Advances; 4, 097136 (2014)
- ME-VE models (cases studied)

 $\boldsymbol{\omega}$

Homogeneous (H)

Microstructure Only (H)

Constitutive and Chemistry Models

Simplified Steinberg–Guinan–Lund (SGL) flow stress model

$$\left(\text{SGL:} \quad Y = Y_A + Y_T(\dot{\varepsilon}, T), \qquad \dot{\varepsilon}_p = \left[\frac{1}{C_1} \exp\left[\frac{2U_k}{T} \left(1 - \frac{Y_T}{Y_p} \right)^2 \right] + \frac{C_2}{Y_T} \right]^{-1} \right)$$

Mie-Grüneisen equation of state (MG-EOS)

MG-EOS:
$$P = \frac{\rho_0 C_0^2 (\eta - 1) \left[\eta - \frac{\Gamma_0}{2} (\eta - 1) \right]}{\left[\eta - s (\eta - 1) \right]^2} + \Gamma_0 E, \quad \eta = \frac{\rho}{\rho_0}, \quad E = \frac{1}{V_0} \int C_v dT$$

History Variable Reactive Burn (HVRB) chemistry model

HVRB:
$$\lambda = 1 - \left(1 - \phi^M / X\right)^X$$
, $\phi = \tau_0^{-1} \int_0^t \left[\left(P - P_i\right) / P_R \right]^Z dt$

- Simulations performed using CTH an Eularian-based hydrocode from SNL.
- > Mesh convergence study performed.
 - Samples have both microstructure and 50 µm voids.
 - Pressure converges more quickly than run distance (20 μ m element vs. 5 μ m element).
 - Final mesh resolution of 5 μ m chosen.
- A size comparison is needed to determine whether the samples are representative of a real size microstructure.
 - There is no significant discrepancy between 1×5 mm microstructures and 3×15 mm microstructures

Mesh resolution

Sample size

Shock to Detonation Transition (SDT)

Shock to Detonation Transition (SDT)

Shock to Detonation Transition (SDT)

Effect of Voids on PP

Statistical Data Sets from SEMSS

- Heterogeneities (microstructure, voids) enhance SDT sensitivity (shortens run distance or lowers PP line)
- Microstructure = constituent and morphological heterogeneities
- Voids = Geometric heterogeneities

	Average Decrease in Run
HMX Sample Set	Distance (compared to
	uniform)

Microstructure	12.2%
5% Voids	20.1%
5% Voids + Microstructure	27.5%

Probability formulation

Step 1: Pop plot fits are generally based on a power law relationship

$$x^* = SP_s^{-m},$$

Step 2: Introduce a Non-dimensional Pop plot number (PPN) to gauge distance from PP

Step 3: Create a probability formulation using a log-normal CDF

Step 4:Write in terms of physical parameters (shock pressure and run distance)

$$\mathscr{P}(P_s, x^*) = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left[\frac{1}{\sqrt{2}\sigma_d} \left(\ln\left(\left(P_s - P_0\right)^m\right) + \ln\left(x^* - x_0^*\right) - \ln S\right)\right].\right]$$

2D Probability Map

3

2D Pressure Map

2D Run Distance Map

Comparison with Experiments

- Model trends match those seen in experiment.
- This model only represents a first approach at predicting SDT on a mm size scale.
- Further calibration of the HVRB or a transition to an Arrhenius-based chemical reaction rate model will be required.

- Garcia, Frank, Kevin S. Vandersall, and Craig M. Tarver. "Shock initiation experiments with ignition and growth modeling on low density HMX." *Journal of Physics: Conference Series*. Vol. 500. No. 5. IOP Publishing, 2014.
- 2) Baytos, John F. LASL explosive property data. Vol. 4. Univ of California Press, 1980.

Design of Heterogeneous Energetic Materials (HEM) via MES

3D Microstructure-explicit/Voids-explicit Models (ME-VE-M) 28

Grain size and surface area

Simulations performed using CTH – an Eularian-based hydrocode from SNL.

ME-VE-Simulations of Shock to Detonation Transition (SDT) ²⁹

*x**: Run-to-detonation distance

ME-VE-Simulations of Shock to Detonation Transition (SDT) 29

 x^* : Run-to-detonation distance

ME-VE-Simulations of Shock to Detonation Transition (SDT) 29

2D Sections of 3D Microstructure

Pressure Fields: Horizontal (H) Sections

Pressure Fields: Horizontal (H) Sections

Pressure Fields: Horizontal (H) Sections

2D-3D Comparison

- ➢ Microstructure only case is chosen.
- There is overall agreement between the 2D and 3D results.
- 2D have more scatter than 3D, indicating that a single or smaller number of 2D runs may not accurately describe material behavior.

Probability Map Comparison

Summary

- MES (microstructure-explicit simulations) at mm size scales allow essential material effects to be captured for prediction of real material behavior.
- SEMSS allow prediction of probabilistic behavior assessment and UQ.
- Analytical relations for macroscopic behavior as functions of material structure for performance and sensitivity are being established and can be used for EM design.

Acknowledgements

- CM gratefully acknowledges the support of the DOE NNSA Stewardship Science Graduate Fellowship (SSGF).
- The authors are grateful for the collaboration with David Kittell and Cole Yarrington (Sandia National Labs), for their assistance in this work.
- All of my labmates for keep me sane these past five years!

