An Experimental View of the Earth's Upper Mantle: Densification, Deformation and Recovery of Olivine-rich Rocks

Cameron Meyers¹, David Kohlstedt¹, Mark Zimmerman¹, Seth Kruckenberg² ¹University of Minnesota, Department of Earth Sciences ²Boston College, Department of Earth and Environmental Sciences

DOE NNSA SSGF Annual Program Review 2018

Introduction to the Earth's mantle

Bovolo (2005)

Deformation Mechanisms and Power-law Creep $\dot{\varepsilon} = A(T, P, \mu_i) \sigma^n d^{-m}$

Strain rate is related to stress and grain-size by power-law;

exponents n and m indicate deformation mechanism

Diffusion Creep: n = 1; m = 3

Dislocation Creep: n = 3 - 5; m = 0

Dislocation Accommodated GBS: n = 2 - 5; m = 1

Hansen et al. (2011)

Cohen (1987)

Dynamic Recrystallization: Grain-size reduction induced by deformation

Crystallographic Preferred Orientation (CPO): rotation and crystallographic alignment of grains due to slip of dislocations

Crystallographic Preferred Orientation (CPO) and Anisotropic Viscostiy

https://Inhansen.wordpress.com/research/ Hansen et al.(2016)

Seismic Anisotropy

Development of improved starting material for experimental studies on olivine-rich rocks: Evacuated Hot-Pressing

Conventional hot-pressing

Conventional hot-pressed San Carlos olivine

nopqrstuvwxyzabcdefghijkln

bcdefghijk qrstuvw fghijklm jklmnop jyzabcde jvwxyza ijklmnop yzabcdefgh yzabcdefgh yzabcdefgh wxyzabcdefabiiklmnopqrstu mnopqrs abcdefg oqrstuvv bqrstuvv defghijklmnopprstuvwxyzab stuvwxyzabcdefghijklmnopc

Evacuated hot-pressed San Carlos olivine

rstuvwxyzabcdefghijklmn fghijklmnopqrstuvwxyzab ivwxyzabcdefghijklmnopc klmnopqrstuvwxyJabcdef iyzabcdefghijklmnopqrstu nopqrstuvwxyzabcdefghijl yzabcdefghijklmnopqrstu nopqrstuwwyzabcdefghij ocdefghijklmnopqrstuvwx qrstuvwxyzabcdefghijklm efghijklmnopqrstuvwxyza uvwxyzabcdefghijklmnopq

transmitted light through 1 mm thickness; 12 mm diameter

Static annealing of conventional hot-press at 1 atm Conventional hot-press Annealed in mixed gas 1250°C; 300 MPa; 4 h 1350°C; 0.1 MPa; 20 h

50 µm

Evacuated hot-press 1250°C; 300 MPa; 4 h

50 µm

Annealed at 1 atm in mixed gas 1350°C; 0.1 MPa; 20 h

Static annealing of evacuated hot-press at 300 MPa

Static anneal of evacuated hot-press

Conventional hot-press of surrounding evacuated hot-press

(same starting powder)

Comparison with previous work

Grain growth in peridotites

High-strain torsional deformation experiments

Static annealing of deformed specimens at 300 MPa

Torsional high-strain deformation experiment

Overview of EBSD analysis

Mechanical data from high-strain torsion experiments

Stress and strain calculated at edge of specimen

Tangential section of high-strain torsion samples

Inverse Pole Figure False Color Map

CPO of samples deformed in torsion to high-strain

Microstructures of annealed tangential sections

Annealed at 1300°C, 300 Mpa, 7hrs

Intragranular Crystallographic Distortion: Kernel Angular Misorientation

Overview

- Evacuated hot-pressing reduces contamination filled porosity to the point that one can easily read through a 1-mm thick slice.
- Grain boundary mobility is enhanced in evacuated hot-presses relative to conventional hot-presses of the same powder.
- High-strain torsion of evacuated hot-pressed olivine aggregates leads to grain-size refinement, intragranular crystallographic distortion, development of a strong shape preferred orientation (SPO), and development of a strong crystallographic preferred orientation (CPO)
- During static annealing of samples deformed to high strains, grains become progressively equiaxed and intragranular crystallographic distortion is reduced, while CPO geometry and strength remains relatively constant

Thanks to:

National Nuclear Security Administration Stewardship Science Graduate Fellowship National Science Foundation University of Minnesota Characterization Facility Minnesota Nano Center Members of the Kohlstedt Research Group Kruckenberg Research Group

Radial stress and strain gradient in torsional deformation

Paterson and Olgaard (2000)

Microstructures of Radial Sections

Increasing stress, strain, strain-rate

Fourier transform infrared spectroscopy (FTIR) CO_2 SiO₂ Relative absorbtion coefficient (cm⁻ 120 120 120 120 **Conventional HP: Prepared for** Hirth and Kohlstedt, 1995 study (B) **Conventional HP: Prepared for** Hirth and Kohlstedt, 1995 study (A) **Conventional HP: Prepared for** Hansen et al., 2011 study **Conventional HP: This study Evacuated HP: This study** Single Crystal San Carlos Olivine: Average of three perpendicular sections 0 3000 2500 4000 3500 2000 1500 Wavenumber (cm⁻¹)

Confocal Raman spectroscopy

