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http://hyperphysics.phy-astr.gsu.edu/hbase/Nuclear/shell.html

N-body problem  N 1-body problems
(Really <<N)

https://en.wikipedia.org/wiki/Nuclear_shell_model
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• One answer: Spectroscopic Factors (SF) 
• SFs are a way to quantize the occupancy of a given single particle 

orbital

How can we test this picture?
𝑆𝐹 𝑑 = Ԧ𝑝 Ψ𝑁−1|𝑎 Ԧ𝑝|Ψ

𝑁 2

40Ca41Ca

0             ≤ 𝑆𝐹 ≤ 2𝑗 + 1

• Can be interpreted as probability of 
finding core state N-1 within a 
composite state N when removing 
a nucleon in state p

• Example: SF(f7/2 , 41Ca g.s.) = 1.01 ± 0.06

≈

Less single-particle like (strong influence 
of nucleon-nucleon correlations)

More single-particle like (mean field 
is a good approximation)

Lee, PhD Thesis, Michigan State University 2010. 
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Nuclear reactions can be used to extract SF’s
For example, consider a transfer reaction

• Nucleon(s) transferred to/from a projectile from/to a target

• In this case, consider A(p,d)A-1 in inverse kinematics

A p

d

Neutron 

transfer

A-1

Lee, PhD Thesis, Michigan State University 2010. J. P. Schiffer et al., Phys. Rev. 164, 1274 (1967).
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Transfer Reactions To Study Nuclear Structure

• SF’s are NOT observables…but 
can be extracted from 
experimental data via 
comparison to theory

• Transfer reactions have been 
successfully used to extract SF’s 
for decades
• Advent of radioactive ion beams 

opens up new sections of nuclear 
chart for exploration

SF from theoretical shell model calculation
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Extracting SFs

• Calculations tell us 
shape of angular 
distribution for 
transfer reaction to a 
given state with SF = 1

34Ar(p,d)33Arg.s.
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• Different reaction probes of SF should be 
consistent (nuclear structure is invariant)

• Reduction factor: compares experimental SF 
with shell model prediction

• Energy dependence of optical potential? 
Reaction mechanism energy dependent? 
Techniques/approximations unreliable at 
extremes of asymmetry, beam energy, cross 
section? Many body effects?

Transfer vs. Knockout

Rs

Neutron rich Proton rich

Rs = 
SFEXP

SFSM

Lee, PhD Thesis, Michigan State University 2010. Jensen, Phys. Rev. Lett. 107, 032501 2011.Gade, Phys. Rev. C 77, 044306 2008.
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?
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• Different reaction probes of SF should be 
consistent (nuclear structure is invariant)

• Reduction factor: compares experimental SF 
with shell model prediction

• Energy dependence of optical potential? 
Reaction mechanism energy dependent? 
Techniques/approximations unreliable at 
extremes of asymmetry, beam energy, cross 
section? Many body effects?

Transfer vs. Knockout

Rs

Neutron rich Proton rich

Rs = 
SFEXP

SFSM

• Repeat transfer measurement, but 
matching the beam energy for the knockout 
measurement

Lee, PhD Thesis, Michigan State University 2010. Jensen, Phys. Rev. Lett. 107, 032501 2011.Gade, Phys. Rev. C 77, 044306 2008.
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National Superconducting Cyclotron Laboratory (NSCL)
• Coupled Cyclotron Facility at the NSCL (on the 

campus of Michigan State University) 
• K500 and K1200 cyclotrons accelerate stable isotopes 

(from 16O to 238U) up to half the speed of light
• Smash stable beam into Be target: fragmentation 

produces a wide variety of nuclei, some of which are 
exotic 

• A1900 Fragment Separator selects particular isotopes of 
interest, which are delivered to experimental areas

http://www.nscl.msu.edu/public/science/isotope.html

For this experiment
Primary beams: 

36Ar, 48Ca
Secondary beams: 

34Ar, 46Ar



J. Manfredi, SSGF Annual Review
6/22/2017, Slide 11

Experimental Setup
Measuring complete kinematics of 34,46Ar(p,d) at 70 MeV/u

Target (proton)

34,46Ar @ 70 MeV/u

Φ
S800

33,45Ar

MCP's

θ

deuteron

(from CCF at NSCL)

Based on figure courtesy of Jenny Lee
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Microchannel plates: MCPs

• Needed to calculate absolute cross section

• Allows for reactions to be localized on 
target (i.e. better angular resolution)

A.M. Rogers et al., Nucl. Instrum. 
Methods Phys. Res. A 795, 325 (2015).
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Microchannel plates: MCPs
• MCPs are each calibrated using brass mask

• With calibrations, we can get beam position at 
each MCP, and therefore beam position at 
target
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S800 Spectrometer
• TOF, ΔE, Φ, P

• Heavy reaction fragment (in this 
case Ar residue) identification

Ar beam from CCF

D. Bazin et al., Nucl. Instrum. Methods Phys. Res. B 204, 629 (2003).

J. Yurkon et al., Nucl. Instrum. Methods Phys. Res. A 422, 291 (1999).
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S800 Spectrometer
• To calibrate, account for 

dependence of TOF and ΔE on 
focal plane coordinates (CRDC 
positions/angles) 

Focal Plane 
Detectors

Target

Beam 

• Same particle can take 
different trajectories, giving 
a different TOF and ΔE

33Ar
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ΔE (65μm)

E (1.5mm)

CsI(Tl)

High Resolution Array: HiRA

• Modular array of Si + CsI charged particle detectors

• Measures energy, position information

• Energy loss in a “thin” detector vs. a “thick detector” yields particle 
identification (PID)

Wallace, et al., NIM A 583, 302-312, 2007.
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High Resolution Array: HiRA

• Need two stages of PID 
(due to kinematics)

Wallace, et al., NIM A 583, 302-312, 2007.

ΔE (65μm) E (1.5mm) CsI(Tl)

p
p

t d

t

d
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Kinematics for 46Ar(p,d)45Ar Gated on S800

ΔE (65μm) E (1.5mm) CsI(Tl)

d

45Ar
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Beam Spot Reconstruction for 46Ar(p,d)45Ar
• Beam spot large at 

target position

4 mm2 per 
pixel

~300 mm2

beam spot 
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Kinematics Comparison
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Example Excitation Energy Spectrum
• In the center-of-mass frame:

Deuteron energy 

 Q-value

 Excitation Energy of 45Ar

• Use the number of counts in 
a given angular range to get 
cross section
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Example Angular Distribution

• Correct for geometrical 
efficiency

• 46Ar(p,d)45Arg.s. 



J. Manfredi, SSGF Annual Review
6/22/2017, Slide 23

Conclusions

• Spectroscopic factors are an important tool in studying nuclear structure

• Nuclear reactions can be used to probe nuclear structure via extraction 
of spectroscopic factors
• Discrepancy between transfer and knockout reactions

• High energy transfer reactions on proton-rich (34Ar) and neutron-rich 
(46Ar) argon isotopes were measured at the NSCL

• Next step: perform theoretical calculations, compare to data, and extract 
spectroscopic factors
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Backup Slides
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Analysis Progress: HiRA Si Calibration
• 5-point calibration with 228Th alpha source

Before After
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HiRA Efficiency
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Bethe Bloch Equation
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(p,d) vs. (d,p)

• Masses with both 
measurements range 
from 11 to 53

• Good check for 
consistency of transfer
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Deriving SF relation

• Fermi’s golden rule

• DWBA Approximations:

• Assuming single particle states…

Approximations: one step direct process, reaction weak 
enough to use 1st order perturbation theory, adiabatic 
approximation (deuteron breakup), distorted waves



J. Manfredi, SSGF Annual Review
6/22/2017, Slide 31

Evaluation of transfer theory

• Nunes, et al claim transfer data 
corroborates knockout data

• Quantified errors in reaction 
theory from optical potential by 
performing exact three-body 
Faddeev calculation

• But…large (20%) divergence 
between Faddeev and ADWA 
results

• PRC 83, 034610
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Woods-Saxon Potential

• Plus spin orbit:
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Ion Chamber Energy check

• Energy loss calculations 
performed with LISE++
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Knockout vs (e, e’ p)
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CRDCs


