Transfer Reactions on Argon Isotopes

Juan Manfredi
SSGF Annual Review
June 22, 2017
N-body problem \rightarrow N 1-body problems

(Really <<N)

http://hyperphysics.phy-astr.gsu.edu/hbase/Nuclear/shell.html

https://en.wikipedia.org/wiki/Nuclear_shell_model
How can we test this picture?

- One answer: **Spectroscopic Factors (SF)**
 \[SF = \int d\vec{p} \left| \langle \Psi^{N-1} | a_{\vec{p}} | \Psi^N \rangle \right|^2 \]

- SFs are a way to quantize the occupancy of a given single particle orbital

\[0 \leq SF \leq 2j + 1 \]

- Can be interpreted as **probability of finding** core state \(N-1 \) within a composite state \(N \) when removing a nucleon in state \(p \)

- Example: \(SF(f_{7/2}, ^{41}\text{Ca g.s.}) = 1.01 \pm 0.06 \)

- Less single-particle like (strong influence of nucleon-nucleon correlations)

- More single-particle like (mean field is a good approximation)

Nuclear reactions can be used to extract $SF's$.
For example, consider a transfer reaction:

- Nucleon(s) transferred to/from a projectile from/to a target
- In this case, consider $A(p,d)A-1$ in inverse kinematics

Transfer Reactions To Study Nuclear Structure

- SF’s are NOT observables...but can be *extracted* from experimental data via comparison to theory
- Transfer reactions have been successfully used to extract SF’s for decades
 - Advent of radioactive ion beams opens up new sections of nuclear chart for exploration
Extracting SFs

- Calculations tell us shape of angular distribution for transfer reaction to a given state with SF = 1
Transfer vs. Knockout

- Different reaction probes of SF *should* be consistent (nuclear structure is invariant)
- **Reduction factor**: compares experimental SF with shell model prediction

\[
R_s = \frac{SF_{\text{EXP}}}{SF_{\text{SM}}}
\]

- Energy dependence of optical potential? Reaction mechanism energy dependent? Techniques/approximations unreliable at extremes of asymmetry, beam energy, cross section? Many body effects?

Transfer vs. Knockout

- Different reaction probes of SF should be consistent (nuclear structure is invariant)
- Reduction factor: compares experimental SF with shell model prediction

$$R_s = \frac{SF_{\text{EXP}}}{SF_{\text{SM}}}$$

- Energy dependence of optical potential? Reaction mechanism energy dependent? Techniques/approximations unreliable at extremes of asymmetry, beam energy, cross section? Many body effects?

- Repeat transfer measurement, but matching the beam energy for the knockout measurement

National Superconducting Cyclotron Laboratory (NSCL)

- Coupled Cyclotron Facility at the NSCL (on the campus of Michigan State University)
 - K500 and K1200 cyclotrons accelerate stable isotopes (from ^{16}O to ^{238}U) up to half the speed of light
 - Smash stable beam into Be target: fragmentation produces a wide variety of nuclei, some of which are exotic
 - A1900 Fragment Separator selects particular isotopes of interest, which are delivered to experimental areas

For this experiment
Primary beams: ^{36}Ar, ^{48}Ca
Secondary beams: ^{34}Ar, ^{46}Ar

http://www.nscl.msu.edu/public/science/isotope.html
Experimental Setup

Measuring complete kinematics of 34,46Ar(p,d) at 70 MeV/u

34,46Ar + p → d + 33,45Ar

34,46Ar @ 70 MeV/u (from CCF at NSCL)

MCP's

Target (proton)

33,45Ar

deuteron

Based on figure courtesy of Jenny Lee
Microchannel plates: MCPs

- Needed to calculate absolute cross section
- Allows for reactions to be localized on target (i.e. better angular resolution)

Microchannel plates: MCPs

- MCPs are each calibrated using brass mask
- With calibrations, we can get beam position at each MCP, and therefore beam position at target
S800 Spectrometer

- TOF, ΔE, Φ, P
- Heavy reaction fragment (in this case Ar residue) identification

Ar beam from CCF

S800 Spectrometer

- To calibrate, account for dependence of TOF and ΔE on focal plane coordinates (CRDC positions/angles)

- Same particle can take different trajectories, giving a different TOF and ΔE

![Diagram of S800 Spectrometer with 33Ar label and energy loss vs. TOF matrix]
High Resolution Array: HiRA

- Modular array of Si + CsI charged particle detectors
- Measures energy, position information
- Energy loss in a “thin” detector vs. a “thick detector” yields particle identification (PID)

High Resolution Array: HiRA

• Need two stages of PID (due to kinematics)

Kinematics for 46Ar(p,d)45Ar Gated on S800

45Ar

d

ΔE (65μm) E (1.5mm) CsI(Tl)

Lab Energy (MeV)

Lab Angle (Degrees)
Beam Spot Reconstruction for $^{46}\text{Ar}(p,d)^{45}\text{Ar}$

- Beam spot large at target position

\(~300 \text{ mm}^2\) beam spot

\(4 \text{ mm}^2\) per pixel

Reconstructed Target Position

U.S. Department of Energy Office of Science
National Science Foundation
Michigan State University

J. Manfredi, SSGF Annual Review
6/22/2017, Slide 19
Kinematics Comparison

Kinematics Without MCP

Lab Energy (MeV)

Lab Angle (Degrees)

34 32 30 28 26 24 22 20 18 16 14 5 10 15 20 25 30 35 40

Kinematics With MCP

Lab Energy (MeV)

Lab Angle (Degrees)

34 32 30 28 26 24 22 20 18 16 14 5 10 15 20 25 30 35 40
Example Excitation Energy Spectrum

- In the center-of-mass frame:
 - Deuteron energy → Q-value → Excitation Energy of 45Ar
- Use the number of counts in a given angular range to get cross section
Example Angular Distribution

- Correct for geometrical efficiency
- $^{46}\text{Ar}(p,d)^{45}\text{Ar}_{\text{g.s.}}$
Conclusions

• Spectroscopic factors are an important tool in studying nuclear structure
• Nuclear reactions can be used to probe nuclear structure via extraction of spectroscopic factors
 • Discrepancy between transfer and knockout reactions
• High energy transfer reactions on proton-rich (34Ar) and neutron-rich (46Ar) argon isotopes were measured at the NSCL
• Next step: perform theoretical calculations, compare to data, and extract spectroscopic factors
Acknowledgements

- DOE NNSA Stewardship Science Graduate Fellowship

- **Jenny Lee** (Univ. of Hong Kong), **Andy Rogers** (UMass-Lowell), Zibi Chajecki (Western Michigan Univ.), **Chenyang Niu** (Peking Univ.), Zhengyu Xu (Univ. of Hong Kong), Cole Pruitt (Washington Univ. in St. Louis), Christoph Langer (Frankfurt University, GSI), Karl Smith (Univ. of Tennessee), Charles Loelius (MSU, NSCL), Hiro Iwaski (MSU, NSCL)
Analysis Progress: HiRA Si Calibration

- 5-point calibration with 228Th alpha source

![Telescope 5, E Front, Summed 1D Thorium Spectrum](image)
HiRA Efficiency
Bethe Bloch Equation

\[- \frac{dE}{dx} = K z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{max}}{I^2} - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right] \]

\[\beta \gamma = \frac{p}{E m} = \frac{p}{m}\]

A: atomic mass of absorber
\[K_A = 4\pi N_A r_e^2 m_e c^2 / A = 0.307075 \text{ MeV g}^{-1} \text{cm}^2, \text{ for } A = 1 \text{ g mol}^{-1}\]
z: atomic number of incident particle
Z: atomic number of absorber
I: characteristic ionization constant, material dependent
\(T_{max}\): max. energy transfer (see previous slide)
\(\delta(\beta \gamma)\): density effect correction to ionization energy loss
(p,d) vs. (d,p)

• Masses with both measurements range from 11 to 53
• Good check for consistency of transfer
Deriving SF relation

- Fermi’s golden rule
- DWBA Approximations:

 Approximations: one step direct process, reaction weak enough to use 1st order perturbation theory, adiabatic approximation (deuteron breakup), distorted waves

- Assuming single particle states...
Evaluation of transfer theory

- Nunes, et al claim transfer data corroborates knockout data
- Quantified errors in reaction theory from optical potential by performing exact three-body Faddeev calculation
- But...large (20%) divergence between Faddeev and ADWA results
- PRC 83, 034610
Woods-Saxon Potential

\[V = -\frac{V_0}{1 + \exp\left(\frac{r-R}{a}\right)} \]

- Plus spin orbit:

\[V = V(r) - f(r) \vec{l} \cdot \vec{s} \]
Ion Chamber Energy check

- Energy loss calculations performed with LISE++
Knockout vs (e, e’ p)
CRDCs