A Study of $^{20,22}Ne(p,\gamma)^{21,23}Na$

Stephanie Lyons University of Notre Dame

OUTLINE

- Background and Motivation
 - Hydrogen Burning
 - NeNa Cycle
 - Astrophysical Importance
 - Previous Measurements
- Strength Measurements
 - Experimental Set-up
 - ²²Ne(p,γ)²³Na Results
 - ²⁰Ne(p,γ)²¹Na Results
- Cross-Section Measurements
 - 5U-4 St. Ana Accelerator
 - Gas Target Set-up

STELLAR BURNING

THERMONUCLEAR REACTIONS generate energy through various processes and synthesize the elements we see in the universe today.

STELLAR HYDROGEN BURNING

P-P chain

Our Sun

 $\frac{\text{CNO cycle}}{(M \ge 1.5 \text{ M}_{sun})}$

Sirius A

NENA CYCLE

- Breakout from Hot-CNO
- Advances H-burning
- Creates isotopes of Ne, Na, and Mg

REACTION RATES AND HALF-LIVES OF THE NeNa CYCLE

Reaction	Recommended Reaction Rates $N_{A}\langle \sigma v \rangle_{rr} (cm^{3}mol^{-1}s^{-1})$	β⁺ Decay	Half-life
20 N L () 21 N L		21	
²⁰ Ne(p,y) ²¹ Na	5.91E-06	Ya	23 S
$^{21}Na(p,\gamma)^{22}Mg$	1.99E-02	²² Mg	3.9 s
²¹ Νe(p, γ) ²² Na	1.08E-01	²² Na	2.6 y
$^{22}Na(p,\gamma)^{23}Mg$	2.76E-02	²³ Mg	11 s
²² Νe(p, γ) ²³ Na	3.68E-05		
$^{23}Na(p, \alpha)^{20}Ne$	1.47E-02		

SOURCE: Reaction rates taken from Illiadis (2001) [11] and Beta decay half-lives taken from the Chart of the Nuclides, Temp = 2 x 10⁸ K.

PREVIOUS MEASUREMENTS

HYDROGEN BURNING OF ²⁰Ne AND ²²Ne IN STARS[†]

C. ROLFS^{††} and W. S. RODNEY^{†††} California Institute of Technology, Pasadena, California

and

M. H. SHAPIRO California State University, Fullerton, California[‡]

and

H. WINKLER California State University, Los Angeles, California and California Institute of Technology, Pasadena, California

Received 11 December 1974

Absolute resonance strengths in the 20,21,22 Ne $(p, \gamma)^{21,22,23}$ Na and 21 Ne $(p, p_1\gamma)^{21}$ Ne reactions

J. Keinonen, M. Riihonen, and A. Anttila Department of Physics, University of Helsinki, Helsinki, Finland (Received 1 June 1976)

The ²¹Ne $(p, \gamma)^{22}$ Na and ²¹Ne $(p, p_1\gamma)^{21}$ Ne reactions have been studied in the energy range $E_p = 0.5-2.0$ MeV. The absolute resonance strengths $S = 13 \pm 2$ eV and 0.20 ± 0.03 keV have been obtained for the first time in the ²¹Ne $(p, \gamma)^{22}$ Na and ²¹Ne $(p, p_1\gamma)^{21}$ Ne reactions at $E_p = 1205$ and 1090 keV, respectively. The absolute resonance strengths of 25 (p, γ) and 27 $(p, p_1\gamma)$ resonances in ²²Na have been determined relative to these values. The strengths $S = 1.6 \pm 0.3$ and 21 ± 2 eV for the (p, γ) resonances at $E_p = 1169$ and 1278 keV in ²¹Na and ²³Na, respectively, have been remeasured. The total widths have been determined for 24 resonances in ²²Na using a thin ²¹Ne target. The γ -ray decay properties of resonances in ²²Na and the astrophysical importance of the (p, γ) resonance strengths in ^{21,22,23}Na are discussed.

NUCLEAR REACTIONS ²¹Ne(p, γ), ($p, p_1\gamma$), E = 0.5-2.0 MeV, ²⁰Ne(p, γ), E = 1.2MeV, ²²Ne(p, γ), E = 1.3 MeV; measured $\sigma(E)$; deduced resonance strengths. Enriched targets.

Source	Strength Value [eV]
Rolfs (1975)	1.125 ± 0.075
Keinonen (1977)	0.80 ± 0.15
Stech, thesis (2004)	1.17 ± 0.06

EXPERIMENTAL MOTIVATION

Understand direct-capture cross-section at low energies.

→Measure cross-section relative to the 1169 keV resonance

$$\int_{0}^{\infty} \sigma_{BW}(E) dE = 2\pi^{2} \lambda_{R}^{2} \omega \gamma$$

Resonance strength value unknown!

(Rolfs, 1975)

EXPERIMENTAL SETUP

²⁰Ne AND ²²Ne REACTION SPECTRA

Channel \rightarrow

IMPLANTED TARGET CHARACTERIZATION

22Ne Implanted in Be Target Analysis

Target	n _{atoms} (at/cm^2)
22Ne/Be	$3.28 \pm 0.16 \times 10^{17}$
20Ne/Ta I	5.42 ± 0.29 x 10 ¹⁷
22Ne/Ta I	$1.91 \pm 0.04 \times 10^{17}$
Natural Ne	5.93 ± 0.24 x 10 ¹⁶

Y dE $\omega \gamma =$ $\lambda_R^2 n_{ator}$ $C \times N_{counts}$ $\overline{N_{Beam} \eta(E_{\gamma}) W(\theta) B(E_{\gamma})}$

GE DETECTOR CHARACTERIZATION

Efficiency sources: ¹³⁷Cs,^{56,60}Co, ²⁷Al(p,γ)²⁸Si

$^{22}Ne(p,\gamma)^{23}Na$ Strength Values

Target	ωγ (eV)
²² Ne/Be backing	11.64 ± 0.16
²² Ne/Ta backing	11.99 ± 0.22
Natural Abundance	12.14 ± 0.58
Keinonen (1977)	<i>12.50 ± 0.95</i>
Smit (1979)	10.98 ± 1.05

²²Ne/Ta Target

Natural Abundance Target

$^{20}Ne(p,\gamma)^{21}Na$ Strength Values

Target	ωγ (eV)
²⁰ Ne/Ta backing	1.13 ± 0.02
Natural Abundance	1.26 ± 0.17
Rolfs (1975)	1.125 ± 0.075
Keinonen (1977)	0.80 ± 0.15
Stech, thesis (2004)	1.17 ± 0.06

²⁰Ne/Ta Target

Natural Abundance Target

Measuring the Cross-section

This is the second phase of our experimental goal to measure the direct-capture cross-section of ${}^{20}Ne(p,\gamma){}^{21}Na$.

5U-4 St. Ana Accelerator

Rhinoceros Gas Target

(Rolfs, 1975)

NEW 5U-4 ACCELERATOR AT ND

RHINOCEROS GAS TARGET

Use Rhino's window-less gas target set-up with an "Octopus" chamber.

Advantages:

- Target is indestructible
- No background from a target backing
- Easily vary the thickness by adjusting the gas pressure
- Can make relative measurements easily by mixing gases in the target region
- Reduce straggling and background effects by stopping the beam far away from target region

CURRENT STATUS

- ✓ Beamline from 5U to target room complete
- ✓ Rhino Gas Target beamline complete
- Rhino is currently under refurbishment
 Testing vacuum pumps
 - → Reprogramming controls for efficiency
- Beam development

IN THE NEXT YEAR

- Rhino beamline optimization
- Characterization of target region
- Repeat target tests with 5U and Georgina (Ge detector array)
- Perform in beam testing of gas target
- Perform and analyze cross-section measurement

ACKNOWLEDGEMENTS

All those that helped with experiment Nuclear Science Laboratory Support Staff

Krell Institute

REFERENCES

- Y.P. Antoufiev, O.E. Badawy, L.M. El-Nadi, D.A.E. Darwish, and P.V. Sorokin. Energy levels of the Si²⁸ nucleus. *Nucl. Phys.*, 54:301–314, 1964.
- [2] A. Anttila, J. Keinonen, M. Hautala, and I. Forsblom. Use of the ${}^{27}Al(p,\gamma){}^{28}Si$, $E_p = 992keV$ resonance as a gamma-ray intensity standard. *Nucl. Inst. and Meth.*, 147:501–505, 1977.
- [3] E.L. Bakkum and C. van der Leun. Low-spin states of ${}^{23}Na$ investigated with the reaction ${}^{22}Ne(p,\gamma){}^{23}Na$. Nucl. Phys. A., 500:1–42, 1989.
- [4] H.W. Becker, L. Buchmann, J. Goerres, K.U. Kettner, H. Krawinkel, C. Rolfs, P. Schmalbrock, H.P. Trautvetter, and A. Vlieks. A supersonic jet gas target for γ-ray spectroscopy measurements. *Nucl. Inst. and Meth.*, 198:277–292, 1982.
- [5] T. Griegel, H.W. Drotleff, J.W. Hammer, H. Knee, and K. Petkau. Physical properties of a heavy-ion-beam-excited supersonic jet gas target. J. Appl. Phys., 69:19–22, 1991.
- [6] J. Keinonen, M. Riihonen, and A. Antilla. Absolute resonance strengths in the ${}^{20,21,22}Ne(p,\gamma){}^{21,22,23}Na$ and ${}^{21}Ne(p,p_1\gamma){}^{21}Ne$ reactions. *Phys. Rev. C*, 15:579–586, 1977.
- [7] J.C. Overley, P.D. Parker, and D.A. Bromley. The energy calibration of tandem accelerators. Nucl. Inst. and Meth., 68:61–69, 1969.

- [8] C. Rolfs, W.S. Rodney, M.H. Shapiro, and H. Winkler. Hydrogen burning of ²⁰Ne and ²²Ne in stars. Nucl. Phys. A, 241:460–485, 1975.
- [9] Claus Rolfs. Cauldrons in the Cosmos. University of Chicago Press, Chicago, IL, USA, 1988.
- [10] J.J.A. Smit, M.A. Meyer, J.P.L. Reinecke, and D. Reitmann. A study of the ${}^{22}Ne(p,\gamma){}^{23}Na$ reaction in the energy region $E_P=1.1$ to 2.0 MeV. Nucl. Phys. A, 318:111–124, 1979.
- [11] E. Stech. The Astrophysical Impact of the ${}^{20}Ne(p,\gamma){}^{21}Na$ Reaction. PhD thesis, University of Notre Dame, 2004.
- [12] N. Tanner. Direct radiative capture of protons by O^{16} and Ne^{20*} . Phys. Rev., 114:1060–1064, 1959.
- [13] M. Viitasalo, M.and Piiparinen and A. Antilla. Angular distribution measurements of gammarays from the ${}^{22}Ne(p,\gamma){}^{23}Na$ reaction. Z. Physik, 250:387–394, 1972.
- K. Wolke, V. Harms, H.W. Becker, J.W. Hammer, K.L. Kratz, C. Rolfs, U. Schroeder, H.P. Trautvetter, M. Wiescher, and A. Wohr. Helium burning in ²²Ne. Z. Phys. A, 334:491–510, 1989.

Implanted Target RBS Measurement

RESONANCE STRENGTH

Uncertainties in the resonance strength contribute to the errors in our knowledge of the cross-section

$$\sigma_{BW} = \frac{\lambda_R^2 \omega \gamma}{\pi \Gamma}$$
$$\omega \gamma = \frac{2}{\lambda_P^2} \frac{1}{n_{atoms}} \int \gamma dE$$
$$Y = \frac{C \times N_{counts}}{N_{Beam} \eta(E_{\gamma}) W(\theta) B(E_{\gamma})}$$

Calibration Of The 5U-4 St. Ana Accelerator

Resonance scans were repeatable to within the precision of the hall probe.