Modeling Stability and Turbulence in Tokamak Fusion Reactors

¹MIT PSFC, ²GA, and ³LLNL

DOE NNSA SSGF 2014 Annual Program Review Berkeley, CA, June 24, 2014

- Fusion background
 - Reactions of interest
 - Requirements for a reactor
- Tokamaks
 - What are they? How do they initiate fusion? What currently limits their operation?
 - Details of MIT's Alcator C-Mod
- Modeling
 - Equations and physical intuition
 - Linear stability
 - Nonlinear turbulence
- Conclusions and future work

- Fusion background
 - Reactions of interest
 - Requirements for a reactor
- Tokamaks
 - What are they? How do they initiate fusion? What currently limits their operation?
 - Details of MIT's Alcator C-Mod
- Modeling
 - Equations and physical intuition
 - Linear stability
 - Nonlinear turbulence
- Conclusions and future work

- Fusion background
 - Reactions of interest
 - Requirements for a reactor
- Tokamaks
 - What are they? How do they initiate fusion? What currently limits their operation?
 - Details of MIT's Alcator C-Mod
- Modeling
 - Equations and physical intuition
 - Linear stability
 - Nonlinear turbulence
- Conclusions and future work

- Fusion background
 - Reactions of interest
 - Requirements for a reactor
- Tokamaks
 - What are they? How do they initiate fusion? What currently limits their operation?
 - Details of MIT's Alcator C-Mod
- Modeling
 - Equations and physical intuition
 - Linear stability
 - Nonlinear turbulence
- Conclusions and future work

Fusion of light nuclei produces energy via Einstein's $E = mc^2$

¹Wikimedia Commons

Many experiments focus on fusing hydrogen isotopes, mostly because of their high reaction rates

2

Deuterium-Tritium:

 $\mathsf{D} + \mathsf{T}
ightarrow {4 \over 2}\mathsf{He} + \mathsf{n} + 17.6\,\mathsf{MeV}$

Deuterium-Deuterium:

 $D + D \rightarrow T + p + 4.03 \text{ MeV}$

 $D + D \rightarrow \frac{3}{2}He + n + 3.27 \text{ MeV}$

Many experiments focus on fusing hydrogen isotopes, mostly because of their high reaction rates

Deuterium-Tritium:

 $D + T \rightarrow {}^{4}_{2}He + n + 17.6 \text{ MeV}$

Deuterium-Deuterium:

 $D + D \rightarrow T + p + 4.03 \text{ MeV}$

 $\mathsf{D}+\mathsf{D}\rightarrow {}^3_2\mathsf{He}+\mathsf{n}+3.27\,\mathsf{MeV}$

2

²Wikimedia Commons

Ignition: Fusion byproducts sufficiently heat plasma to sustain fusion reactions

Balancing the energy released by D-T fusion with Bremsstrahlung emission yields

 $nT\tau_E \geq 4.7$ atm-s

Ignition: Fusion byproducts sufficiently heat plasma to sustain fusion reactions

Balancing the energy released by D-T fusion with Bremsstrahlung emission yields

 $nT\tau_E \geq$ 4.7 atm-s

³Physics World (1/04)

Ignition: Fusion byproducts sufficiently heat plasma to sustain fusion reactions

Balancing the energy released by D-T fusion with Bremsstrahlung emission yields

$$nT au_E \ge 4.7 ext{ atm-s}$$

 $nT\tau_E$ has outpaced Moore's Law!³

The tokamak is the leading concept for a magnetic fusion reactor

Tokamak: Toroidal chamber with axial magnetic field

The tokamak is the leading concept for a magnetic fusion reactor

Tokamak: Toroidal chamber with axial magnetic field

⁴EFDA ⁵Wigner RCP

The tokamak is the leading concept for a magnetic fusion reactor

Tokamak: Toroidal chamber with axial magnetic field

⁴EFDA ⁵Wigner RCP

- C-Mod is a compact, high magnetic field $(B \le 8.1 \text{ T})$ tokamak
 - $n \tau_E \sim B^3$
 - Cost $\sim R^3$
- All-metal plasma facing components
 - Substantially changes RF coupling and edge recycling
- Reactor-relevant particle densities and heat fluxes
 - $n\sim 10^{20}\,\mathrm{m}^{-3}$
 - $q_{||}\sim 500~\mathrm{MW/m^{-2}}$
- Workforce development

⁶All-the-World's Tokamaks

6

- C-Mod is a compact, high magnetic field (B ≤ 8.1 T) tokamak
 - $n \tau_E \sim B^3$
 - Cost $\sim R^3$
- All-metal plasma facing components
 - Substantially changes RF coupling and edge recycling
- Reactor-relevant particle densities and heat fluxes
 - $n \sim 10^{20} \,\mathrm{m}^{-3}$
 - $q_{||}\sim 500~\mathrm{MW/m^{-2}}$
- Workforce development

6

⁶Eusion Euture

- C-Mod is a compact, high magnetic field (B ≤ 8.1 T) tokamak
 - $n \tau_E \sim B^3$
 - Cost $\sim R^3$
- All-metal plasma facing components
 - Substantially changes RF coupling and edge recycling
- Reactor-relevant particle densities and heat fluxes
 - $n \sim 10^{20} \, \mathrm{m}^{-3}$
 - $q_{||}\sim 500~\mathrm{MW/m^{-2}}$

• Workforce development

6

- C-Mod is a compact, high magnetic field (B ≤ 8.1 T) tokamak
 - $n \tau_E \sim B^3$
 - Cost $\sim R^3$
- All-metal plasma facing components
 - Substantially changes RF coupling and edge recycling
- Reactor-relevant particle densities and heat fluxes
 - $n\sim 10^{20}~{
 m m}^{-3}$
 - $q_{||}\sim 500~\mathrm{MW/m^{-2}}$
- Workforce development

H-mode operational regime dramatically improves core performance

⁷Wagner et al. PRL '82 ⁸Ciemat Fusion Wiki

H-mode operational regime dramatically improves core performance

⁷Wagner et al. PRL '82 ⁸Ciemat Fusion Wiki

H-mode operational regime dramatically improves core performance

⁷Wagner et al. PRL '82 ⁸Ciemat Fusion Wiki

$$\langle \sigma v \rangle \propto T^{-2/3} \exp\left(-bT^{-1/3}
ight)$$

Edge Localized Modes (ELMs) flush impurities from the H-mode core; ELM onset is readily predicted by peeling-ballooning (PB) theory

An ELM on MAST

9

⁹UKAEA

Edge Localized Modes (ELMs) flush impurities from the H-mode core; ELM onset is readily predicted by peeling-ballooning (PB) theory

An ELM on MAST

9

⁹UKAEA

• $\sim 100 \, \text{kHz} \, \text{QCM}$ expels impurities

• $u^* > 1 \Rightarrow \text{amenable}$ to fluid analysis

Nonideal reduced MHD equations include several effects important for modeling C-Mod's collisional EDA plasmas

¹¹Hazeltine & Meiss, Plasma Confinement '03

The ballooning drive is closely related to the magnetic field curvature κ

 $\boldsymbol{\kappa}\cdot
abla P > 0$

 \Rightarrow Bad Curvature

The ballooning drive is closely related to the magnetic field curvature κ

 $oldsymbol{\kappa} \cdot
abla P > 0$

 \Rightarrow Bad Curvature

 $oldsymbol{\kappa} \cdot
abla P < 0$

 \Rightarrow Good Curvature

The ballooning instability is localized to the tokamak's outboard region

Tokamak Cross Section

Resistive Ballooning Modes (RBMs) may be responsible for C-Mod's QCM

Resistive Ballooning Modes (RBMs) may be responsible for C-Mod's QCM

Resistive Ballooning Modes (RBMs) may be responsible for C-Mod's QCM

Propagates in electron diamagnetic direction!

Propagates in electron diamagnetic direction!

Propagates in electron diamagnetic direction!

diamagnetic direction!

However, recent experimental measurements indicate that the QCM is a drift wave rather than a RBM

Nonlinear predictions:

¹²LaBombard et al. PoP '14

However, recent experimental measurements indicate that the QCM is a drift wave rather than a RBM

Nonlinear predictions:

Recent Measurements¹²:

¹²LaBombard et al. PoP '14

However, recent experimental measurements indicate that the QCM is a drift wave rather than a RBM

The Hall term negligibly influences linear stability, but it drastically changes the nonlinear evolution

The Hall term negligibly influences linear stability, but it drastically changes the nonlinear evolution

The Hall term negligibly influences linear stability, but it drastically changes the nonlinear evolution

The Hall term drives more high frequency turbulence, producing more efficient cascades and potentially explaining differing time series

• Tokamaks are the leading concept for a magnetic confinement fusion reactor

- Tokamak performance is crucially determined by parameters in the device edge
- The quasicoherent mode (QCM) that continuously exhausts impurities in C-Mod's EDA H-mode is *not* predicted by ideal MHD, but linear stability calculations indicate it may be a resistive ballooning mode (RBM)
- RBMs drive a nonlinear feature that is macroscopically similar to the QCM
 - $\bullet\,$ However, recent measurements indicate that the QCM is a drift wave, not a RBM
- Attempts to excite the experimentally observed drift wave response in the model have *not* yet been successful
 - May need to move to a full 2-fluid model

- Tokamaks are the leading concept for a magnetic confinement fusion reactor
- Tokamak performance is crucially determined by parameters in the device edge
- The quasicoherent mode (QCM) that continuously exhausts impurities in C-Mod's EDA H-mode is *not* predicted by ideal MHD, but linear stability calculations indicate it may be a resistive ballooning mode (RBM)
- RBMs drive a nonlinear feature that is macroscopically similar to the QCM
 - However, recent measurements indicate that the QCM is a drift wave, not a RBM
- Attempts to excite the experimentally observed drift wave response in the model have *not* yet been successful
 - May need to move to a full 2-fluid model

- Tokamaks are the leading concept for a magnetic confinement fusion reactor
- Tokamak performance is crucially determined by parameters in the device edge
- The quasicoherent mode (QCM) that continuously exhausts impurities in C-Mod's EDA H-mode is *not* predicted by ideal MHD, but linear stability calculations indicate it may be a resistive ballooning mode (RBM)
- RBMs drive a nonlinear feature that is macroscopically similar to the QCM
 - However, recent measurements indicate that the QCM is a drift wave, not a RBM
- Attempts to excite the experimentally observed drift wave response in the model have *not* yet been successful
 - May need to move to a full 2-fluid model

- Tokamaks are the leading concept for a magnetic confinement fusion reactor
- Tokamak performance is crucially determined by parameters in the device edge
- The quasicoherent mode (QCM) that continuously exhausts impurities in C-Mod's EDA H-mode is *not* predicted by ideal MHD, but linear stability calculations indicate it may be a resistive ballooning mode (RBM)
- RBMs drive a nonlinear feature that is macroscopically similar to the QCM
 - However, recent measurements indicate that the QCM is a drift wave, not a RBM
- Attempts to excite the experimentally observed drift wave response in the model have *not* yet been successful
 - May need to move to a full 2-fluid model

- Tokamaks are the leading concept for a magnetic confinement fusion reactor
- Tokamak performance is crucially determined by parameters in the device edge
- The quasicoherent mode (QCM) that continuously exhausts impurities in C-Mod's EDA H-mode is *not* predicted by ideal MHD, but linear stability calculations indicate it may be a resistive ballooning mode (RBM)
- RBMs drive a nonlinear feature that is macroscopically similar to the QCM
 - However, recent measurements indicate that the QCM is a drift wave, not a RBM
- Attempts to excite the experimentally observed drift wave response in the model have *not* yet been successful
 - May need to move to a full 2-fluid model

- Special thanks to:
 - My advisor, Prof. Miklos Porkolab, for his guidance and patience with this work
 - J. W. Hughes and B. LaBombard for C-Mod experimental data
 - P. B. Snyder for ideal MHD ELITE analysis
 - $\bullet\,$ X. Q. Xu for advising me during my practicum and training me to use BOUT++
 - Krell and its wonderful staff for 4 years of unbelievable support
- Financial support by USDoE under:
 - DE-FC02-99ER54512 (C-Mod)
 - DE-FG02-94ER54235 (PCI)
 - DE-AC52-07NA27344 (BOUT++)
 - NNSA SSGF (E. M. Davis)