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Fusion of light nuclei produces energy via Einstein's E = mc?
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Many experiments focus on fusing hydrogen isotopes, mostly because of

their high reaction rates
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Many experiments focus on fusing hydrogen isotopes, mostly because of

their high reaction rates
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The fusion triple product nT 7¢ sets a necessary condition for ignition

Ignition: Fusion byproducts sufficiently
heat plasma to sustain fusion reactions
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The fusion triple product nT 7¢ sets a necessary condition for ignition

Ignition: Fusion byproducts sufficiently
heat plasma to sustain fusion reactions

Balancing the energy released by
D-T fusion with Bremsstrahlung
emission yields

nTTe > 4.7 atm-s
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The tokamak is the leading concept for a magnetic fusion reactor

Tokamak: Toroidal chamber with
axial magnetic field
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The tokamak is the leading concept for a magnetic fusion reactor

Tokamak: Toroidal chamber with
axial magnetic field
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The tokamak is the leading concept for a magnetic fusion reactor

Tokamak: Toroidal chamber with
axial magnetic field
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MIT's Alcator C-Mod tokamak is uniquely poised to address many

reactor-relevant issues

o C-Mod is a compact, high magnetic
field (B < 8.1T) tokamak

-
12 - @ NTE ~ B3
o Cost ~ R3
10 - .
8 anm
f 6 L -
am L -
L L]
4 - - L --. . -
..',"" o .
=
B, .
0 1 2 3 4 6
R m]
6

6All-the-World's Tokamaks

E. Davis Stability and Turbulence in Tokamaks


http://www.tokamak.info/

MIT's Alcator C-Mod tokamak is uniquely poised to address many

reactor-relevant issues

o C-Mod is a compact, high magnetic
field (B < 8.1T) tokamak
@ NTEg ~ 83
o Cost ~ R3
@ All-metal plasma facing components

o Substantially changes RF coupling
and edge recycling

*USBPO
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MIT's Alcator C-Mod tokamak is uniquely poised to address many

reactor-relevant issues

o C-Mod is a compact, high magnetic
field (B < 8.1T) tokamak
@ NTEg ~ 33
o Cost ~ R3
@ All-metal plasma facing components
o Substantially changes RF coupling
and edge recycling
@ Reactor-relevant particle densities
and heat fluxes
o n~10"m3
o g ~ 500 MW /m-

Fusion Future
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MIT's Alcator C-Mod tokamak is uniquely poised to address many

reactor-relevant issues

o C-Mod is a compact, high magnetic
field (B < 8.1T) tokamak
@ NTEg ~ 33
o Cost ~ R3
@ All-metal plasma facing components
o Substantially changes RF coupling
and edge recycling
@ Reactor-relevant particle densities
and heat fluxes
3 oy N o n~10"m3
o g ~ 500 MW /m-

@ Workforce development
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H-mode operational regime dramatically improves core performance
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Edge Localized Modes (ELMs) flush impurities from the H-mode core;
ELM onset is readily predicted by peeling-ballooning (PB) theory

An ELM on MAST

‘UKAEA
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Edge Localized Modes (ELMs) flush impurities from the H-mode core;

ELM onset is readily predicted by peeling-ballooning (PB) theory
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C-Mod's Enhanced D, (EDA) H-mode expels impurities with a continuous

edge Quasicoherent Mode (QCM) rather than peridodic ELMs

e ~ 100kHz QCM
expels impurities

[C_T ELhifree | [EDAH-mode] [EDAH-mode ]

0.9 1.0
Time (sec)

OGreenwald et al. PoP '99
E. Davis Stability and Turbulence in Tokamaks


http://scitation.aip.org/content/aip/journal/pop/6/5/10.1063/1.873451

C-Mod's Enhanced D, (EDA) H-mode expels impurities with a continuous
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C-Mod's Enhanced D, (EDA) H-mode expels impurities with a continuous
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Nonideal reduced MHD equations include several effects important for

modeling C-Mod'’s collisional EDA plasmas

Vorticity: gu; +Vi-Vw= B2VH ({g) +2b x - VP
Pressure: %P +V,-VP=0 EZT:S;:/:/Z@
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"Hazeltine & Meiss, Plasma Confinement '03
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The ballooning drive is closely related to the magnetic field curvature

k-VP>0

= Bad Curvature
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The ballooning drive is closely related to the magnetic field curvature
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The ballooning instability is localized to the tokamak’s outboard region

Tokamak Cross Section
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Resistive Ballooning Modes (RBMs) may be responsible for C-Mod's QCM

7/(0.5 W*e//)
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Resistive Ballooning Modes (RBMs) may be responsible for C-Mod's QCM
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Nonlinear simulations produce a feature similar to EDA's QCM

f [kHz]
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nlinear simulations produce a feature similar to EDA’'s QCM
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nlinear simulations produce a feature similar to EDA’'s QCM
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However, recent experimental measurements indicate that the QCM is a

drift wave rather than a RBM

Nonlinear predictions:
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However, recent experimental measurements indicate that the QCM is a

drift wave rather than a RBM

Nonlinear predictions: Recent Measurements!?:
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However, recent experimental measurements indicate that the QCM is a

drift wave rather than a RBM
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The Hall term negligibly influences linear stability, but it drastically

changes the nonlinear evolution

n = 15 Linear Stability
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The Hall term negligibly influences linear stability, but it drastically

changes the nonlinear evolution
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The Hall term negligibly influences linear stability, but it drastically

changes the nonlinear evolution
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Ideal
+—a Resistive
m—a Resistive + Electron Hall

10° — Resistive
— Resistive + Electron Hall

-7
o To 12 12 is 1070100 200 300 400 500 600 700
Model VP/ Exp. VP t [TA]

E. Davis Stability and Turbulence in Tokamaks



The Hall term drives more high frequency turbulence, producing more

efficient cascades and potentially explaining differing time series
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Conclusions and future work

Tokamaks are the leading concept for a magnetic confinement fusion reactor

Tokamak performance is crucially determined by parameters in the device edge

The quasicoherent mode (QCM) that continuously exhausts impurities in C-Mod's
EDA H-mode is not predicted by ideal MHD, but linear stability calculations
indicate it may be a resistive ballooning mode (RBM)
RBMs drive a nonlinear feature that is macroscopically similar to the QCM

o However, recent measurements indicate that the QCM is a drift wave, not a RBM

Attempts to excite the experimentally observed drift wave response in the model
have not yet been successful

e May need to move to a full 2-fluid model
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