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Fusion of light nuclei produces energy via Einstein’s E = mc2

1
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Many experiments focus on fusing hydrogen isotopes, mostly because of
their high reaction rates

2

Deuterium-Tritium:

D + T→ 4
2He + n + 17.6 MeV

Deuterium-Deuterium:

D + D→ T + p + 4.03 MeV

D + D→ 3
2He + n + 3.27 MeV

2Wikimedia Commons
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The fusion triple product nT τE sets a necessary condition for ignition

Ignition: Fusion byproducts sufficiently
heat plasma to sustain fusion reactions

Balancing the energy released by
D-T fusion with Bremsstrahlung
emission yields

nT τE ≥ 4.7 atm-s

nT τE has outpaced Moore’s Law! 3

3Physics World (1/04)
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The tokamak is the leading concept for a magnetic fusion reactor

Tokamak: Toroidal chamber with
axial magnetic field

4 5

4EFDA
5Wigner RCP
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MIT’s Alcator C-Mod tokamak is uniquely poised to address many
reactor-relevant issues
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C-Mod is a compact, high magnetic
field (B ≤ 8.1 T) tokamak

n τE ∼ B3

Cost ∼ R3

All-metal plasma facing components

Substantially changes RF coupling
and edge recycling

Reactor-relevant particle densities
and heat fluxes

n ∼ 1020 m-3

q|| ∼ 500 MW/m-2

Workforce development

6All-the-World’s Tokamaks
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MIT’s Alcator C-Mod tokamak is uniquely poised to address many
reactor-relevant issues
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MIT’s Alcator C-Mod tokamak is uniquely poised to address many
reactor-relevant issues
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H-mode operational regime dramatically improves core performance

7

8

〈σv〉 ∝ T−2/3 exp
(
−bT−1/3

)

7Wagner et al. PRL ’82
8Ciemat Fusion Wiki
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Edge Localized Modes (ELMs) flush impurities from the H-mode core;
ELM onset is readily predicted by peeling-ballooning (PB) theory

An ELM on MAST

9
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C-Mod’s Enhanced Dα (EDA) H-mode expels impurities with a continuous
edge Quasicoherent Mode (QCM) rather than peridodic ELMs

∼ 100 kHz QCM
expels impurities

ν∗ > 1 ⇒ amenable
to fluid analysis

10

EDA is stable to PB modes!

10Greenwald et al. PoP ’99
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Nonideal reduced MHD equations include several effects important for
modeling C-Mod’s collisional EDA plasmas

Vorticity:
∂ω

∂t
+ V⊥ · ∇ω = B2∇||

(
J||
B

)
+ 2b̂× κ · ∇P

Pressure:
∂P

∂t
+ V⊥ · ∇P = 0

Ohm’s:
∂A||
∂t

= −∇||Φ− ηJ|| +
1

2en
∇||P

Nonideal Physics11

Resistivity

Hall physics

Diamagnetism

Definitions

ω =
nmi

B

(
∇2
⊥Φ +

1

2en
∇2
⊥P

)
, V⊥ =

1

B
b̂×∇⊥

(
Φ +

P

2en

)
J|| = J||0 −

1

µ0
∇2
⊥A||

11Hazeltine & Meiss, Plasma Confinement ’03
E. Davis Stability and Turbulence in Tokamaks
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The ballooning drive is closely related to the magnetic field curvature κ

κ · ∇P > 0

⇒ Bad Curvature

κ · ∇P < 0

⇒ Good Curvature
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The ballooning instability is localized to the tokamak’s outboard region

Tokamak Cross Section

E. Davis Stability and Turbulence in Tokamaks



Resistive Ballooning Modes (RBMs) may be responsible for C-Mod’s QCM

n = 15

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Model ∇P / Exp. ∇P

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

γ
/(

0
.5
ω
∗e
ff

) Diamagnetic Stability Threshold

Ideal

E. Davis Stability and Turbulence in Tokamaks



Resistive Ballooning Modes (RBMs) may be responsible for C-Mod’s QCM

n = 15

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Model ∇P / Exp. ∇P

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

γ
/(

0
.5
ω
∗e
ff

) Diamagnetic Stability Threshold

Ideal
Resistive

E. Davis Stability and Turbulence in Tokamaks



Resistive Ballooning Modes (RBMs) may be responsible for C-Mod’s QCM

n = 15

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Model ∇P / Exp. ∇P

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

γ
/(

0
.5
ω
∗e
ff

) Diamagnetic Stability Threshold

Ideal
Resistive

E. Davis Stability and Turbulence in Tokamaks



Nonlinear simulations produce a feature similar to EDA’s QCM
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However, recent experimental measurements indicate that the QCM is a
drift wave rather than a RBM

Nonlinear predictions:
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⇒ Ballooning mode

Recent Measurements12:

⇒ Drift wave!

Hall term may help:
∂A||
∂t = −∇||Φ− ηJ|| + 1

2en∇||P

12LaBombard et al. PoP ’14
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The Hall term negligibly influences linear stability, but it drastically
changes the nonlinear evolution

n = 15 Linear Stability
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The Hall term drives more high frequency turbulence, producing more
efficient cascades and potentially explaining differing time series
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Conclusions and future work

Tokamaks are the leading concept for a magnetic confinement fusion reactor

Tokamak performance is crucially determined by parameters in the device edge

The quasicoherent mode (QCM) that continuously exhausts impurities in C-Mod’s
EDA H-mode is not predicted by ideal MHD, but linear stability calculations
indicate it may be a resistive ballooning mode (RBM)

RBMs drive a nonlinear feature that is macroscopically similar to the QCM

However, recent measurements indicate that the QCM is a drift wave, not a RBM

Attempts to excite the experimentally observed drift wave response in the model
have not yet been successful

May need to move to a full 2-fluid model
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RBMs drive a nonlinear feature that is macroscopically similar to the QCM

However, recent measurements indicate that the QCM is a drift wave, not a RBM

Attempts to excite the experimentally observed drift wave response in the model
have not yet been successful

May need to move to a full 2-fluid model
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