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Rare physics

Neutrinoless Double-Beta 
Decay (0νββ)

Interactions of WIMP Dark 
Matter

 N
A Z→  N−2

A
(Z+2)+2e-

136Xe 136Ba++ +

2e-

In both cases, one must detect an amount of energy deposited 
by the energetic particles involved in the processes

Physical processes that, if they exist, are extremely 
difficult to detect
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Gas-Based Detectors
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Typical components of a gaseous detector:
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Measurement and Analysis

Main Vessel

Pressure Vessel

Gauges / 
Monitors

* The main vessel contains the gas
medium in which ionization/scintillation
will be produced to detect particles.

Gas-based Detectors:
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Detection of ionization in gaseous detectors:
 - Production and drift: an amount of ionization (dictated
   by the particle energy E and the W-value of the medium)
   is produced as N = E/W electron-hole pairs that then drift 
   in an electric field towards an amplification/readout plane.

Ed

Gas-based Detectors:

Amplification Region
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Detection of ionization in gaseous detectors:
 - Amplification: in this (optional) step, each electron
   is amplified to produce a detectable signal.

Example: amplification via a LEM (large electron multiplier) 
simulated using Garfield++ [1].  LEMs can give gains up to ~105

[1] Garfield++ - simulation of tracking detectors.  http://garfieldpp.web.cern.ch/garfieldpp/ 
Also used Gmsh: C. Geuzaine, J.-F. Remacle. Int. J. for Numerical Methods in Engineering 79, 1309 (2009).  http://geuz.org/gmsh. 
          and Elmer: CSC IT Center for Science. Elmer.  http://www.csc.fi/english/pages/elmer.

Gas-based Detectors:
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Detection of ionization in gaseous detectors:
 - Readout: ionization is converted into an electrical
   signal and recorded.  The amount of ionization produced
   is related to the energy of the incident particle.

Example: current induction on a conductor (1), followed by
acquisition (2) and analysis (3)

E

v
i(t)=−q v⃗ ( t)⋅F⃗w

-i(
t)

t

Energy

C
ou

nt
s/
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n

1 21 3
Shockley-Ramo 

Theorem
(Many Events)

Gas-based Detectors:
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Detection of scintillation in gaseous detectors:
 - Production and propagation: a number of 
   scintillation photons is produced along with the ionization;
   some are produced from electron-hole pairs that recombine.

Gas-based Detectors:
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Detection of scintillation in gaseous detectors:
 - Amplification/Readout: photons are detected by some
   light-sensitive device such as a PMT (photomultiplier
   tube).  (Acquisition is similar to ionization case.)

Example: PMTs convert individual photons into pulses of 
electrical current.

Gas-based Detectors:
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Neutrinoless Double Beta 
Decay (0νββ)
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Neutrinoless Double-Beta Decay:

Nuclear beta decay:

 - Nuclear pairing force can 
create necessary conditions 
forbidding single β-decay

- β-decay can occur with 2ν; 
if the neutrino were its own 
antiparticle (“Majorana”), it 
may also occur with 0ν 

n→ p+e-
+ν̄e

 N
A Z

 N−1
A Z1

 N−2
A Z2

E
ne

rg
y

0νββ(or 2νββ)

Figure after: F. Avignone et. al.  Rev. Mod. Phys. 80, 481 (2008).

Neutrino

(136Xe is a candidate nucleus) 
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What is the neutrino?

A small neutral particle, exists in 3 types (“flavors”):

- Flavor and mass are not entirely independent: they mix
- Absolute neutrino mass scale and mass hierarchy unknown

( e
-

νe) (μ
-

νμ
) ( τ

-

ντ
)

From J. J. Gomez-Cadenas et. al. Riv. Nuovo Cim. 
35 (2012) 29-98 (arxiv:1109.5515).

∣v e 〉   -  red

∣vμ 〉   -  green

∣v τ 〉   -  blue

(Normal) (Inverted)
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 Reaction rate [1]:

[1] F. Avignone et. al.  Rev. Mod. Phys. 80, 481 (2008).

(T 1/2
0ν
)
−1
=G0 ν(Qββ , Z)∣M 0ν ∣

2
〈mββ 〉

2

 phase-space factor
(nucleus-dependent)

 nuclear matrix element
 (nuclear structure calculation)

 effective neutrino mass

mββ=∣∑i

U ei
2 mi∣

0νββ and the neutrino mass:

- May tell us something about the scale of the neutrino mass
- Nonzero rate if the neutrino is its own antiparticle
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[1] J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012).
[2] Z. Hou et al., arXiv:1212.6267v1.

Normal

Inverted Degenera
te

 - randomly choose m
min

, sign of Δm2

23
, mixing parameters [1]

 - vertical lines are 2σ cosmological limits on the neutrino mass sum [2]

Thanks to Azriel Goldschmidt for suggesting the Monte-Carlo approach to this plot.

0νββ and the neutrino mass:

KamLAND-Zen + EXO
Experiments [3]

[3] Gando et. al.  arXiv:1211.3863.
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Detection of 0νββ:

1. Good energy resolution

2. Large detector with significant amount of ββ isotope

3. Low background  

A rare process – if it exists; detection demands:
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Detection of 0νββ:

1. Good energy resolution

Principle signature of 0νββ 
is the 2νββ spectrum with 
an end peak at Q

0νββ
 

- good energy resolution
  required to distinguish the
  0νββ peak (2νββ is a 
  background)

Assumes 5% energy resolution, 2νββ peak 
normalized to 1, 0νββ peak normalized to 10-2 

and in inset spectrum to 10-6.
From S. R. Elliot and P. Vogel.  Annu. Rev. Nucl. Part. 

Sci. 2002 52, 115 (2002).
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Detection of 0νββ:

2. Large detector with significant amount of ββ isotope

Present/future 0νββ experiments: isotopes, masses, and locations.
From: S. Elliot.  Mod. Phys. Lett. A.  27, 1230009 (2012). (arXiv 1203.1070)
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Detection of 0νββ:

3. Low background

Water equivalent depth of several 
underground labs (from [1]).

[1] J.J. Gomez-Cadenas et. al. Riv. Nuovo Cim. 35 (2012) 29-98. (arxiv:1109.5515)

Potential background 
includes cosmic muon 
interactions and neutrons 
produced by these muons 
in rocks
- greatly reduced by 
  placing detector deep 
  underground
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R&D at LBNL
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- NEXT: Neutrino Experiment with a Xenon TPC
- NEXT-DBDM: NEXT Double-Beta Dark Matter
- Prototype to study energy resolution and tracking [1]

 0νββ search with electroluminescence in GXe

G
rid

P
M

T
 A

rray 

[1] NEXT Collaboration.  Nucl. Instrum. Meth. A 708, 101 (2013).

The NEXT-DBDM TPC:
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The NEXT-DBDM prototype:

 Cross-sectional view

19-PMT 
array

5 mm 
EL gap

8 cm drift 
region

10L stainless 
steel vessel

- Drawing by Robin LaFever
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Electroluminescence:

Drift

EL

Buffer Regions

- An electroluminescent TPC: key regions

PMT Array
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- Incident particle deposits energy, producing
  ionization (S2) and scintillation (S1)

Electroluminescence:
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- Electrons drift in an electric field to a narrow 
  region of high field

Ed E EL

Electroluminescence:
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Ed E EL

- Xenon medium scintillates as the electrons
  traverse the EL gap; electrons gain enough
  energy to excite but not ionize xenon atoms

Electroluminescence:
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The NEXT-DBDM prototype:

 A typical event

S1 S2
(drift)
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The NEXT-DBDM prototype:

 Energy spectrum for 137Cs source:

- Peaks integrated
  and identified as
  S1 or S2
- S2 proportional
  to energy of event
- No corrections on
  physics applied

x-rays ~30 keV

Compton scattering

full-energy peak
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The NEXT-DBDM prototype:

 Position-dependence

- Events located
  radially outward
  from central point
  register lower in E
- Correct with radial
  cut (r*) for now
- Better tracking will
  improve correction
  capabilities

r*
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The NEXT-DBDM prototype:

 Energy resolution

- Cut on event radius
  r* and valid S1
- Near-1% FWHM
  resolution at
  662 keV
- Extrapolate to
  Q

ββ
= 2458.7 keV [1]:

  ~0.52% FWHM

1.05% FWHM
 = 662.7 ± 0.2 keV

 = 2.972 ± 0.172 keV

[1] McCowan and Barber.  Phys. Rev. C 82, 024603 (2010).  



06/25/2013 Josh Renner, SSGF Annual Review 30

The NEXT-DBDM prototype:

 Tracking

- 64-SiPM (silicon 
photomultiplier) 
plane, 1 cm spacing; 
provides pixelated 
photon detection

A reconstructed muon track; SiPMs 
shown shaded relative to total intensity, 
and squares are reconstructed points.
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 NEXT-100 (Canfranc, Spain):

- up to 150 kg of Xe, enriched to isotope 136Xe
- main vessel is cylindrical, 1.36 m diameter, 2.28 m length
- ~7000 SiPM-tracking plane; 60 3-in. PMT energy plane
- expected resolution near 0.5% FWHM at Q

ββ

General reference: NEXT Collaboration.  JINST 7 T06001 (2012).

NEXT-100:
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 A high pressure Xe TPC:

- Drawing by Derek Shuman

NEXT-100:
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Dark Matter



06/25/2013 Josh Renner, SSGF Annual Review 34

Dark Matter in Our Universe:

 How do we know it exists?

General reference: J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012).

 - velocities of astronomical
   objects (rotation of mass in
   galaxies) unexpected

From: Chandra X-Ray Observatory.
Photo 1E 0657-56.

http://chandra.harvard.edu/photo/2006/1e0657

From: Bertone et. al.  arxiv0404175v2.

 - x-ray and weak lensing
   imaging
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 What could it be?

General reference: J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012).

 - black holes created before synthesis of light elements
 - axions: particles proposed in context of QCD
 - massive (keV) sterile neutrinos
 - WIMPs: weakly interacting massive particles

Dark Matter in Our Universe:

– Data from Planck 2013 results. I. 
(Astronomy & Astrophysics manuscript, 2013) 

Approximate Division of 
Energy in the Universe
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 Three general methods [1]:
 1.  In accelerators such as the LHC
 2.  Indirectly (e.g., gamma and neutrino fluxes on Earth)
 3.  Directly (underground detectors)

Detection of Dark Matter:

 WIMP direct detection [2]:
- Measure energy of WIMP
  elastic scattering on nuclei
- Large detector, low
  background, long time
- Rate depends on M

WIMP
 

  and σ
WIMP

- Must have a way to
  distinguish nuclear recoils
  from gamma background

[1] Ahlen et. al. arXiv:0911.0323. 
[2] J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012).
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 A dark matter wind:

[1.]  Drukier et. al.  Phys. Rev. D 33, 3495 (1986).

 - Velocity of local WIMP density depends on [1]:
   1.  Velocity of the sun in galactic rest frame
   2.  Velocity of the earth about sun (annual rate modulation) 
   3.  Rotational velocity of the earth (daily angular modulation)
 - Detecting the direction of a WIMP interaction is important

Detection of Dark Matter:

From: Ahlen et. al. arXiv:0911.0323

∡  From
equator
-90o

-18o

-54o

0o
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Measuring directionality:

Understanding the response of xenon to nuclear 
recoils is important to quantifying this effect 

- Recombination signal could be used to determine 
nuclear recoil direction relative to an external field: 
new idea of Dave Nygren

[1] Ahlen et. al. arXiv:0911.0323. 

E

More columnar 
recombination

Less columnar 
recombination

E

Detection of Dark Matter:
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Studies in liquid Xe; gas Xe should be similar
- S2/S1 nuclear recoil discrimination 
- use neutrons to produce nuclear recoils for calibration 

[1] E. Aprile et. al.  Phys. Rev. Lett. 97, 081302 (2006)

From: E. Aprile et. al.  PRL 97, 081302 (2006)

Example: XENON prototype [1]

5 Ci Am/Be neutron source

- 5 pe/keVee (1 pe/keVr) S1
- 8.4 pe/electron S2
- >~7.5% light collection efficiency

We attempt similar 
measurements in ~14 bar 
gaseous xenon

Nuclear vs. Electron Recoils:
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Neutron source 238Pu/Be (10 mCi 238Pu):
- Approx. 20000 neutrons/second
- Tag 4.4 MeV gamma ray coincident with large % of neutrons 
- Max neutron energy E

n
 ≈ 6 MeV

- Max recoil energy [1] [4A/(1+A)2]E
n
 ≈ 175 keV

[1] G. Knoll.  Radiation Detection and Measurement, 3rd. ed.  Wiley, Hoboken, NJ (2000).

NaI scintillator
Neutron source

Lead block (2” thick)
TPC

Scintillator

Source

Lead

TPC

Preliminary Detection of Nuclear Recoils:
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Example of a candidate neutron event:

Time (10 ns samples)

S1

S2

A
D

C
 C

o
u

n
ts

* Thanks to Yasuhiro Nakajima for reducing our electronic noise significantly 

Preliminary Detection of Nuclear Recoils:

- nuclear recoil produces a short track
- single, Gaussian-shaped pulse
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S2/S1 recoil identification (~14 bar gaseous Xe)
Xenon x-rays Higher-energy s

Nuclear recoils

Preliminary Detection of Nuclear Recoils:
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Electron-positron annihilation radiation
- Coincidence between collinear 511 keV gamma rays
- Same trigger conditions as neutron run (except NaI 
scintillator region of interest)

NaI scintillator

22Na source

TPC

Scintillator
Source

TPC

Preliminary Detection of Nuclear Recoils:
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S2/S1 recoil identification: γ vs. neutron sources 

Neutron source Gamma source

Preliminary Detection of Nuclear Recoils:
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Neutron source Gamma source

Nuclear recoils

X-rays Higher-energy γ's
(inelastic scatters) Higher-energy γ's

X-rays

Noise S1s with high-energy γ's  

Preliminary Detection of Nuclear Recoils:
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Summary:

 0νββ, if detected, has several key implications:
 - Violation of total lepton number
 - Majorana nature of neutrinos
 - Neutrino mass hierarchy and scale (some information
   whether 0νββ is detected or not)

The nature of dark matter is still uncertain, and 
xenon gas may be a method of direct detection; 
further development is under way

Gaseous xenon has proven capable of good 
energy resolution and tracking capabilities 
needed for a competitive 0νββ experiment 
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Thank You
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Additional Slides
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Detection of 0νββ:
3. Low background

Additional mechanisms for 
background reduction include:

- identification of 2e- track

- tagging of the daughter ion

Simulated ββ 2-electron track.  
From: NEXT Collaboration.  Conceptual Design Report.  

arXiv 1106.3630..

136Xe 136Ba++ +

2e-

136Ba+

EXO [1] is working towards 
extracting/identifying this Ba+ 
ion from liquid xenon

[1] EXO Collaboration. JINST 7 P05010 (2012).



06/25/2013 Josh Renner, SSGF Annual Review 51

Previous ββ experiments:

- Source = detector:
  → 76Ge, few kg (Heidelberg-Moscow and IGEX)
  → 136Xe, xenon gas TPC, 3.3 kg enriched to  (Gotthard)

- Source ≠ detector:
  → Geochemical (measure excess of ββ daughter isotope)
  → Thin-foil sources (small mass, but use of tracking 
       detectors to significantly reduce background - 
       Irvine TPC, ELEGANT, and NEMO)

- No widely accepted evidence of 0νββ (though 1 claim)

Began search for 0νββ, some observed 2νββ:

General references: S. Elliott and P. Vogel.  Annu. Rev. Nucl. Part. Sci. 52, 115 (2002).
                                J.J. Gomez-Cadenas et. al. Riv. Nuovo Cim. 35, 29 (2012). (arxiv:1109.5515)  
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 Direct detection limits

Detection of Dark Matter:

From: J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012).

- Spin-independent
  cross section limits
- Note several claims
  (DAMA, CoGeNT, and
  another by CRESST[1]
  not shown) seem to be
  excluded by low-
  background experiments

[1] Angloher et. al. (CRESST collaboration) arXiv:1109.0702. 
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Drift (TPB coated 
film inset) ELPMT Array

Electroluminescent Readout

The NEXT-DBDM TPC:

TPB-coated film
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The NEXT-DBDM prototype:

 Event with xenon x-ray:
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● Diffusion cuts (isolate single-pulse events with widths 
that follow a diffusion curve)

Preliminary detection of nuclear recoils:

Neutron source Gamma source
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● Example of a candidate neutron event
(~29 S1 photons, ~5758 S2 photons)

Preliminary detection of nuclear recoils:

S1

S2
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● Next steps:

Preliminary detection of nuclear recoils:

- Reduce noise in waveforms – should improve S1 threshold

- Attempt to improve light collection efficiency as much as possible
  (coat teflon panels directly with TPB?)

- Better understand neutron source and expected energy spectrum;
  attempt to obtain recoil energy calibration

- Move neutron source location to study recombination relative to drift 
  field orientation (directionality)
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● Onsager model [1]:

Recombination models:

- Describes “geminate” recombination
- Considers external + Coulomb fields
- Single electron/ion pair
- Collected charge depends linearly on E

[1] L. Onsager.  Phys. Rev. 54, 554 (1938).
[2] G. Jaffé.  Ann. Phys. 42, 303 (1913).

● Jaffé model [2,3,4]:
- Describes “columnar” recombination
- Considers external, but not Coulomb fields
- Initial distribution of electron-ion pairs
- Collected charge does not depend linearly on E

E

Q(E )≈Q 0+K∣E∣

∂N ±

∂ t
=−μ± E⃗⋅∇⃗ N±+d ∇

2 N±−α N + N -

E

[3] E. Aprile et. al.  Noble Gas Detectors.  (Wiley-VCH, Weinheim, 2006).
[4] J. Thomas and D. A. Imel.  Phys. Rev. A. 36, 614 (1987).

Q(E )=
Q0

1+K /E
(Ext. field) (Diffusion) (Recombination)
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● No widespread agreement for a single theory:

Recombination models:

[1] J. Thomas and D. A. Imel.  Phys. Rev. A. 36, 614 (1987).

- Modifications to models exist to fit experimental data

Total charge collected (113Sn source) in LAr vs. field, from [1].

Thomas-Imel box model [1]

- modified Jaffé model
- no diffusion
- zero positive ion mobility
- +/- charge distributed
  uniformly in a box
- one free parameter (fit)

Microphysics encapsulated 
in a fit parameter: possible 
to simulate more precisely?
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Improvements to NEXT-DBDM:

● How TPB helped

~ 662 keV gammas; 
~ 800 average S1 photons
~ 1.2 photons/keVee

Before After

~ 511 keV gammas; 
~ 200 average S1 photons
~ 0.4 photons/keVee

* Approx. factor of 3 improvement in light yield
(Note: drift fields were not matched)
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● NaI spectra, calibrated to 4.4 MeV and 511 keV peaks

Preliminary detection of nuclear recoils:

Neutron source Gamma source

Note: the majority of the coincidences
were not in the 511 peak in the NaI spectrum
after timing cuts were applied
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Improvements to NEXT-DBDM:

● TPB (tetraphenyl butadiene)-coated 3M reflective films
- Placed surrounding drift region and just behind EL region
- Wavelength shift ~170 nm xenon light to ~ 430 nm
- Factor of ~3 better light collection efficiency 

● Eliminate buffer regions
- Reduces background due to uncollected S2
- Deceivingly low S2/S1 from additional S1 photons in buffer regions 

TPB-coated filmExtended drift 
region (TPB 
coated film inset)
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19-PMT 
array

5 mm 
EL gap

drift region

10L stainless 
steel vessel

- Drawing by Robin LaFever

Source 
tube

Signal/HV 
cables

The NEXT-DBDM TPC:
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