

# High Pressure Xenon Detectors for Rare Physics Searches

J. Renner<sup>1,2</sup>, M. Egorov<sup>1,2</sup>, V. M. Gehman<sup>1</sup>, A. Goldschmidt<sup>1</sup>, B. Hsieh<sup>1,2</sup>, J. Joseph<sup>1</sup>, T. Miller<sup>1</sup>, D. Nygren<sup>1</sup>, C.A.B. Oliveira<sup>1</sup>, D. Shuman<sup>1</sup>, and T. Weber<sup>1</sup> and the NEXT Collaboration <sup>1</sup> LBNL <sup>2</sup> UC Berkeley

SSGF Annual Review June 25, 2013

### **Rare physics**

# Physical processes that, if they exist, are extremely difficult to detect

Neutrinoless Double-Beta Decay (0νββ)



Interactions of WIMP Dark Matter



In both cases, one must detect an amount of energy deposited by the energetic particles involved in the processes

## Typical components of a gaseous detector:



# Detection of ionization in gaseous detectors:

 Production and drift: an amount of ionization (dictated by the particle energy E and the W-value of the medium) is produced as N = E/W electron-hole pairs that then drift in an electric field towards an amplification/readout plane.



Detection of ionization in gaseous detectors:

- **Amplification**: in this (optional) step, each electron is amplified to produce a detectable signal.



# Example: amplification via a LEM (large electron multiplier) simulated using Garfield++ [1]. LEMs can give gains up to $\sim 10^5$

06/25/2013

Josh Renner, SSGF Annual Review

[1] Garfield++ - simulation of tracking detectors. http://garfieldpp.web.cern.ch/garfieldpp/

Also used Gmsh: C. Geuzaine, J.-F. Remacle. Int. J. for Numerical Methods in Engineering 79, 1309 (2009). http://geuz.org/gmsh.

and Elmer: CSC IT Center for Science. Elmer. http://www.csc.fi/english/pages/elmer.

# Detection of ionization in gaseous detectors:

- **Readout**: ionization is converted into an electrical signal and recorded. The amount of ionization produced is related to the energy of the incident particle.



Example: current induction on a conductor (1), followed by acquisition (2) and analysis (3)

Detection of scintillation in gaseous detectors:

- **Production and propagation**: a number of scintillation photons is produced along with the ionization; some are produced from electron-hole pairs that recombine.



Detection of scintillation in gaseous detectors:

- **Amplification/Readout**: photons are detected by some light-sensitive device such as a PMT (photomultiplier tube). (Acquisition is similar to ionization case.)



Example: PMTs convert individual photons into pulses of electrical current.

# Neutrinoless Double Beta Decay (0νββ)

### Nuclear beta decay:

Neutrino



- Nuclear pairing force can create necessary conditions forbidding single β-decay

- β-decay can occur with 2ν; if the neutrino were its own antiparticle ("Majorana"), it may also occur with 0ν

### (<sup>136</sup>Xe is a candidate nucleus)

Figure after: F. Avignone et. al. Rev. Mod. Phys. 80, 481 (2008).

 $n \rightarrow p + e^{-} + \overline{v_{\rho}}$ 

### What is the neutrino?

A small neutral particle, exists in 3 types ("flavors"):



From J. J. Gomez-Cadenas et. al. Riv. Nuovo Cim. 35 (2012) 29-98 (arxiv:1109.5515).

- Flavor and mass are not entirely independent: they mix
- Absolute neutrino mass scale and mass hierarchy unknown

# Reaction rate [1]:



- May tell us something about the scale of the neutrino mass

- Nonzero rate if the neutrino is its own antiparticle

Josh Renner, SSGF Annual Review

[1] F. Avignone et. al. Rev. Mod. Phys. 80, 481 (2008).

### $0\nu\beta\beta$ and the neutrino mass:



Thanks to Azriel Goldschmidt for suggesting the Monte-Carlo approach to this plot.

- randomly choose  $m_{min}$ , sign of  $\Delta m_{23}^2$ , mixing parameters [1]
- vertical lines are  $2\sigma$  cosmological limits on the neutrino mass sum [2]

#### 06/25/2013

Josh Renner, SSGF Annual Review

[1] J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012). [3] Gando *et. al.* arXiv:1211.3863. [2] Z. Hou et al., arXiv:1212.6267v1.

# **Detection of 0vββ:**

A rare process – if it exists; detection demands:

- 1. Good energy resolution
- 2. Large detector with significant amount of  $\beta\beta$  isotope
- 3. Low background

# **Detection of 0vββ:**

## 1. Good energy resolution



Assumes 5% energy resolution,  $2\nu\beta\beta$  peak normalized to 1,  $0\nu\beta\beta$  peak normalized to  $10^{-2}$ and in inset spectrum to  $10^{-6}$ . From S. R. Elliot and P. Vogel. Annu. Rev. Nucl. Part. Sci. 2002 52, 115 (2002). Principle signature of  $0\nu\beta\beta$  is the  $2\nu\beta\beta$  spectrum with an end peak at  $Q_{0\nu\beta\beta}$ 

 good energy resolution required to distinguish the 0vββ peak (2vββ is a background)

# **Detection of 0vββ:**

### 2. Large detector with significant amount of $\beta\beta$ isotope

| Experiment                   | Isotope     | Mass                    | Technique                                                        | Present Status      | Location   |
|------------------------------|-------------|-------------------------|------------------------------------------------------------------|---------------------|------------|
| AMoRE <sup>8990</sup>        | $^{100}Mo$  | 50  kg                  | CaMoO <sub>4</sub> scint. bolometer crystals                     | Development         | Yangyang   |
| CANDLES <sup>91</sup>        | $^{48}Ca$   | 0.35  kg                | $CaF_2$ scint. crystals                                          | Prototype           | Kamioka    |
| CARVEL <sup>92</sup>         | $^{48}Ca$   | 1  ton                  | $CaF_2$ scint. crystals                                          | Development         | Solotvina  |
| COBRA <sup>93</sup>          | $^{116}Cd$  | 183  kg                 | <sup>enr</sup> Cd CZT semicond. det.                             | Prototype           | Gran Sasso |
| CUORE-0 <sup>69</sup>        | $^{130}$ Te | 11  kg                  | $TeO_2$ bolometers                                               | Construction - 2012 | Gran Sasso |
| CUORE <sup>69</sup>          | $^{130}$ Te | 203  kg                 | $TeO_2$ bolometers                                               | Construction - 2013 | Gran Sasso |
| $DCBA^{94}$                  | $^{150}$ Ne | 20  kg                  | <sup>enr</sup> Nd foils and tracking                             | Development         | Kamioka    |
| EXO-200 <sup>57</sup>        | $^{136}$ Xe | 160  kg                 | Liq. <sup>enr</sup> Xe TPC/scint.                                | Operating - 2011    | WIPP       |
| EXO <sup>70</sup>            | $^{136}$ Xe | 1-10 t                  | Liq. <sup>enr</sup> Xe TPC/scint.                                | Proposal            | SURF       |
| GERDA <sup>71</sup>          | $^{76}$ Ge  | $\approx 35 \text{ kg}$ | enrGe semicond. det.                                             | Operating - 2011    | Gran Sasso |
| $GSO^{95}$                   | $^{160}Gd$  | 2  ton                  | Gd <sub>2</sub> SiO <sub>5</sub> :Ce crys. scint. in liq. scint. | Development         |            |
| KamLAND-Zen <sup>96</sup>    | $^{136}$ Xe | 400  kg                 | $^{enr}$ Xe disolved in liq. scint.                              | Operating - 2011    | Kamioka    |
| LUCIFER <sup>97 98</sup>     | $^{82}Se$   | 18  kg                  | ZnSe scint. bolometer crystals                                   | Development         | Gran Sasso |
| Majorana <sup>77</sup> 78 79 | $^{76}$ Ge  | 26  kg                  | enrGe semicond. det.                                             | Construction - 2013 | SURF       |
| MOON 99                      | $^{100}Mo$  | 1 t                     | <sup>enr</sup> Mofoils/scint.                                    | Development         |            |
| SuperNEMO-Dem <sup>87</sup>  | $^{82}Se$   | 7  kg                   | <sup>enr</sup> Se foils/tracking                                 | Construction - 2014 | Fréjus     |
| SuperNEMO <sup>87</sup>      | $^{82}Se$   | 100  kg                 | <sup>enr</sup> Se foils/tracking                                 | Proposal - 2019     | Fréjus     |
| NEXT 82 83                   | $^{136}$ Xe | 100  kg                 | gas TPC                                                          | Development - 2014  | Canfranc   |
| $SNO + \frac{8485}{}$        | $^{150}$ Nd | 55  kg                  | Nd loaded liq. scint.                                            | Construction - 2013 | SNOLab     |

Present/future 0νββ experiments: isotopes, masses, and locations. From: S. Elliot. Mod. Phys. Lett. A. 27, 1230009 (2012). (arXiv 1203.1070)

# **Detection of 0\nu\beta\beta:**

# 3. Low background

Potential background includes cosmic muon interactions and neutrons produced by these muons in rocks

- greatly reduced by placing detector deep underground



Water equivalent depth of several underground labs (from [1]).

Josh Renner, SSGF Annual Review

[1] J.J. Gomez-Cadenas et. al. Riv. Nuovo Cim. 35 (2012) 29-98. (arxiv:1109.5515)

# **R&D at LBNL**

### The NEXT-DBDM TPC:

 $0\nu\beta\beta$  search with electroluminescence in GXe

- NEXT: Neutrino Experiment with a Xenon TPC
- NEXT-DBDM: NEXT Double-Beta Dark Matter
- Prototype to study energy resolution and tracking [1]





06/25/2013

Josh Renner, SSGF Annual Review

[1] NEXT Collaboration. Nucl. Instrum. Meth. A 708, 101 (2013).

Grid

PMT Array

# **Cross-sectional view**





- An electroluminescent TPC: key regions



- Incident particle deposits energy, producing ionization (S2) and scintillation (S1)



- Electrons drift in an electric field to a narrow region of high field



- Xenon medium scintillates as the electrons traverse the EL gap; electrons gain enough energy to excite but not ionize xenon atoms



# Energy spectrum for <sup>137</sup>Cs source:

- Peaks integrated and identified as S1 or S2
- S2 proportional to energy of event
- No corrections on physics applied



# Position-dependence

- Events located radially outward from central point register lower in E
- Correct with radial cut (r\*) for now
- Better tracking will improve correction capabilities



# **Energy resolution**

- Cut on event radius r\* and valid S1
- Near-1% FWHM resolution at 662 keV
- Extrapolate to  $Q_{\beta\beta}$  = 2458.7 keV [1]: ~0.52% FWHM



[1] McCowan and Barber. Phys. Rev. C 82, 024603 (2010).

Tracking

- 64-SiPM (silicon photomultiplier) plane, 1 cm spacing; provides pixelated photon detection



A reconstructed muon track; SiPMs shown shaded relative to total intensity, and squares are reconstructed points.

# NEXT-100 (Canfranc, Spain):

- up to 150 kg of Xe, enriched to isotope <sup>136</sup>Xe
- main vessel is cylindrical, 1.36 m diameter, 2.28 m length
- ~7000 SiPM-tracking plane; 60 3-in. PMT energy plane
- expected resolution near 0.5% FWHM at Q



06/25/2013

Josh Renner, SSGF Annual Review

General reference: NEXT Collaboration. JINST 7 T06001 (2012).

### **NEXT-100:**

# A high pressure Xe TPC:



# **Dark Matter**

### **Dark Matter in Our Universe:**

# How do we know it exists?

 velocities of astronomical objects (rotation of mass in galaxies) unexpected



From: Bertone et. al. arxiv0404175v2.



From: Chandra X-Ray Observatory. Photo 1E 0657-56. http://chandra.harvard.edu/photo/2006/1e0657

- x-ray and weak lensing imaging

Josh Renner, SSGF Annual Review

General reference: J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012).

### **Dark Matter in Our Universe:**

What could it be?

- black holes created before synthesis of light elements
- axions: particles proposed in context of QCD
- massive (keV) sterile neutrinos
- WIMPs: weakly interacting massive particles



06/25/2013

Josh Renner, SSGF Annual Review

General reference: J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012).

### **Detection of Dark Matter:**

# Three general methods [1]:

- 1. In accelerators such as the LHC
- 2. Indirectly (e.g., gamma and neutrino fluxes on Earth)
- 3. Directly (underground detectors)

# WIMP direct detection [2]:

- Measure energy of WIMP elastic scattering on nuclei
- Large detector, low background, long time
- Rate depends on  $M_{_{WIMP}}$  and  $\sigma_{_{_{WIMP}}}$
- Must have a way to distinguish nuclear recoils from gamma background



#### 06/25/2013

Josh Renner, SSGF Annual Review

[1] Ahlen et. al. arXiv:0911.0323.

[2] J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012).

# A dark matter wind:

- Velocity of local WIMP density depends on [1]:
  - 1. Velocity of the sun in galactic rest frame
  - 2. Velocity of the earth about sun (annual rate modulation)
  - 3. Rotational velocity of the earth (daily angular modulation)
- Detecting the direction of a WIMP interaction is important



From: Ahlen et. al. arXiv:0911.0323

### **Detection of Dark Matter:**

# Measuring directionality:

- Recombination signal could be used to determine nuclear recoil direction relative to an external field: new idea of Dave Nygren



# Understanding the response of xenon to nuclear recoils is important to quantifying this effect

06/25/2013 [1] Ahlen *et. al.* arXiv:0911.0323. Josh Renner, SSGF Annual Review

### **Nuclear vs. Electron Recoils:**

# Studies in liquid Xe; gas Xe should be similar

- S2/S1 nuclear recoil discrimination
- use neutrons to produce nuclear recoils for calibration



06/25/2013

Josh Renner, SSGF Annual Review

[1] E. Aprile et. al. Phys. Rev. Lett. 97, 081302 (2006)

# Neutron source <sup>238</sup>Pu/Be (10 mCi <sup>238</sup>Pu):

- Approx. 20000 neutrons/second
- Tag 4.4 MeV gamma ray coincident with large % of neutrons
- Max neutron energy  $E_n \approx 6 \text{ MeV}$
- Max recoil energy [1]  $[4A/(1+A)^2]E_n \approx 175 \text{ keV}$

Nal scintillator Neutron source Lead block (2" thick) TPC

Example of a candidate neutron event:

- nuclear recoil produces a short track
- single, Gaussian-shaped pulse



\* Thanks to Yasuhiro Nakajima for reducing our electronic noise significantly



Josh Renner, SSGF Annual Review

# Electron-positron annihilation radiation

- Coincidence between collinear 511 keV gamma rays
- Same trigger conditions as neutron run (except Nal scintillator region of interest)

Nal scintillator



### S2/S1 recoil identification: $\gamma$ vs. neutron sources



source Ga

#### Gamma source

#### **Neutron source**



### Summary:

# $0\nu\beta\beta$ , if detected, has several key implications:

- Violation of total lepton number
- Majorana nature of neutrinos
- Neutrino mass hierarchy and scale (some information whether  $0\nu\beta\beta$  is detected or not)

Gaseous xenon has proven capable of good energy resolution and tracking capabilities needed for a competitive  $0\nu\beta\beta$  experiment

The nature of dark matter is still uncertain, and xenon gas may be a method of direct detection; further development is under way

This work was supported by:

- the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy (Contract No. DE-AC02-05CH11231)

- the National Energy Research Scientific Computing Center (NERSC), supported by the Office of Science of the U.S. Department of Energy, (Contract No. DE-AC02-05CH11231)

- a Department of Energy National Nuclear Security Administration Stewardship Science Graduate Fellowship, (Contract No. DEFC52-08NA28752)

# Special thanks to the DOE NNSA SSGF and Krell Institute!

# Thank You

# **Additional Slides**

# **Detection of 0\nu\beta\beta:**

## 3. Low background

Additional mechanisms for background reduction include:

- identification of 2e- track
- tagging of the daughter ion





EXO [1] is working towards extracting/identifying this Ba+ ion from liquid xenon

# **Previous** ββ experiments:

Began search for  $0\nu\beta\beta$ , some observed  $2\nu\beta\beta$ :

- Source = detector:
  - $\rightarrow$  <sup>76</sup>Ge, few kg (Heidelberg-Moscow and IGEX)
  - $\rightarrow$  <sup>136</sup>Xe, xenon gas TPC, 3.3 kg enriched to (Gotthard)
- Source ≠ detector:
  - $\rightarrow$  Geochemical (measure excess of  $\beta\beta$  daughter isotope)
  - → Thin-foil sources (small mass, but use of tracking detectors to significantly reduce background Irvine TPC, ELEGANT, and NEMO)
- No widely accepted evidence of  $0\nu\beta\beta$  (though 1 claim)

06/25/2013

Josh Renner, SSGF Annual Review

General references: S. Elliott and P. Vogel. Annu. Rev. Nucl. Part. Sci. 52, 115 (2002). J.J. Gomez-Cadenas *et. al.* Riv. Nuovo Cim. 35, 29 (2012). (arxiv:1109.5515)

### **Detection of Dark Matter:**

**Direct detection limits** 

- Spin-independent cross section limits
- Note several claims (DAMA, CoGeNT, and another by CRESST[1] not shown) seem to be excluded by lowbackground experiments



From: J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012).

Josh Renner, SSGF Annual Review

[1] Angloher *et. al.* (CRESST collaboration) arXiv:1109.0702.

### The NEXT-DBDM TPC:

## **Electroluminescent Readout**



### Event with xenon x-ray:



• Diffusion cuts (isolate single-pulse events with widths that follow a diffusion curve)



• Example of a candidate neutron event (~29 S1 photons, ~5758 S2 photons)



### • Next steps:

- Reduce noise in waveforms should improve S1 threshold
- Attempt to improve light collection efficiency as much as possible (coat teflon panels directly with TPB?)
- Better understand neutron source and expected energy spectrum; attempt to obtain recoil energy calibration
- Move neutron source location to study recombination relative to drift field orientation (directionality)

### Recombination models:

- Onsager model [1]:
  - Describes "geminate" recombination
  - Considers external + Coulomb fields
  - Single electron/ion pair
  - Collected charge depends linearly on E



### • Jaffé model [2,3,4]:

- Describes "columnar" recombination
- Considers external, but not Coulomb fields
- Initial distribution of electron-ion pairs
- Collected charge does not depend linearly on E

$$\frac{\partial N_{\pm}}{\partial t} = -\mu_{\pm} \vec{E} \cdot \vec{\nabla} N_{\pm} + d \nabla^2 N_{\pm} - \alpha N_{+} N_{-}$$
(Ext. field) (Diffusion) (Recombination)



 $Q(E) = \frac{Q_0}{1 + K/E}$ 

#### 06/25/2013

[1] L. Onsager. *Phys. Rev.* 54, 554 (1938).
[2] G. Jaffé. *Ann. Phys.* 42, 303 (1913).

Josh Renner, SSGF Annual Review

8). [3] E. Aprile *et. al. Noble Gas Detectors*. (Wiley-VCH, Weinheim, 2006). [4] J. Thomas and D. A. Imel. *Phys. Rev. A*. 36, 614 (1987).

### Recombination models:

- No widespread agreement for a single theory:
  - Modifications to models exist to fit experimental data

Thomas-Imel box model [1]

- modified Jaffé model
- no diffusion
- zero positive ion mobility
- +/- charge distributed uniformly in a box
- one free parameter (fit)

### Microphysics encapsulated in a fit parameter: possible to simulate more precisely?



#### 06/25/2013

Josh Renner, SSGF Annual Review

[1] J. Thomas and D. A. Imel. Phys. Rev. A. 36, 614 (1987).

• How TPB helped



\* Approx. factor of 3 improvement in light yield (Note: drift fields were not matched)

Josh Renner, SSGF Annual Review

• Nal spectra, calibrated to 4.4 MeV and 511 keV peaks



Note: the majority of the coincidences were not in the 511 peak in the NaI spectrum after timing cuts were applied

### Improvements to NEXT-DBDM:

### • TPB (tetraphenyl butadiene)-coated 3M reflective films

- Placed surrounding drift region and just behind EL region
- Wavelength shift ~170 nm xenon light to ~ 430 nm
- Factor of ~3 better light collection efficiency
- Eliminate buffer regions
  - Reduces background due to uncollected S2
  - Deceivingly low S2/S1 from additional S1 photons in buffer regions



### The NEXT-DBDM TPC:

