

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Thermonuclear Reaction Rate of ${}^{17}O(p,\gamma){}^{18}F$

Matthew Q. Buckner

25 June 2013 DOE SSGF Annual Program Review 2013 Inn and Spa at Loretto, Santa Fe, NM

Matthew Q. Buckner

Summary

- Motivation
 - Classical novae
 - ¹⁷O(p,γ)¹⁸F
 - Direct capture
- Experiment
 - Previous measurements
 - Preliminary calculations
 - Experimental projections
 - Progress
- Conclusion

Artist's interpretation of nova...

Classical Novae

- WD accretes H-rich matter from binary companion
 - Often CO white dwarf (progenitor \leq 9–10 M $_{\odot}$)
- Thermonuclear explosion of H-rich matter
- Only SN and γ -ray bursts exceed in energy
- Overlap of chemistry, physics, computer science

Classical Novae

- Mass transfer by Roche Lobe overflow
- Accretion disk (if weak magnetic field)
- Accreted layer electron degenerate
 - Heated by compression & reactions
 - P does not depend on T
 - thermonuclear runaway (TNR)
- 35 ± 11 per year in Galaxy
- Binary system not disrupted
 - Periodic: $10^4 10^5$ years

R David A. Hardy / www.astroart.org

Classical Novae

- Ejecta reveals underlying WD properties
 - TNR evolution, peak temperature, expansion time
 - Constrain explosion burning models
 - Constrain evolutionary models
 - Mixing outer core to envelope \rightarrow abundances
 - Shear mixing
 - Elemental diffusion

R David A. Hardy / www.astroart.org

CNO Cycle

- Explosive hydrogen burning
 - During nova: Hot CNO2
- CNO not at equilibrium
- β^+ -unstable nuclei
 - Convection to surface
 - (*p*, γ), (*p*, α) preserve
 - Catalyze outburst

Major Nova Products

- \approx 1/3000th Galactic dust and gas
- Most significant source of:

- Rarest oxygen isotope
 - ¹⁷O/¹⁶O = 0.038% [16]
 - H₂¹⁷O = \$2535 per gram
- CN are primary source

β^+ -Unstable Nuclei

- 511 keV detection constrain models
- Detect before optical frequencies visible
- Temperature insensitive
- Slower than CNO

 $t_{1/2} = 110 \text{ min}$

¹⁸F Importance

- ¹³N β^+ decay while opaque
- ¹⁸F β^+ decay while transparent
 - Drives nova ejecta 0
 - INTEGRAL could detect γ

¹⁸F Importance

Reaction Rates

- Statistically meaningful
- Physically motivated
- PDFs assigned to MC input
- Input: exp. strengths
- Input: partial widths
- Output consistent with PDF

Probability

$^{17}O(p,\gamma)^{18}F$ Gamow Window

Temperature region reactions contribute to rate

•
$$T_{CN} = 100-400 \text{ MK} \rightarrow E_0 = 103-261 \text{ keV}$$

Rate Contributions

Direct Capture

- Proton directly captured from scattering to bound state
- Nuclear exterior more important than interior
- No compound nucleus formed

Figure based on C. E. Rolfs and W. S. Rodney, "Cauldrons in the Cosmos" (Univ. Chicago Press, 1988).

Previous ${}^{17}O(p,\gamma){}^{18}F$ DC Measurements

$^{17}O(p,\gamma)^{18}F$ Direct Capture Measurements

Group	Facility	Accelerator	E ^{lab} (keV)	Ι (μ Α)
C. Rolfs (1973)†	University Toronto	1MV JN Van de Graaff	270-440	120
	McMaster University	3MV JN Van de Graaff	880-1780	150-200
C. Fox <i>et al.</i> (2005)†	LENA-TUNL	1MV JN Van de Graaff	180-540	100
A. Chafa <i>et al.</i> (2005)‡	CSNSM Orsay	Electrostatic PAPAP	< 250	pprox 70
J. R. Newton <i>et al.</i> (2010)†	LENA-TUNL	1MV JN Van de Graaff	275-500	75
U. Hager <i>et al.</i> (2012)*	TRIUMF	DRAGON	260-505	_
A. Kontos et al. (2012)†	NSL-Univ. Notre Dame	1MV JN Van de Graaff	365-700	20-40
		4MV JN Van de Graaff	600-1800	20-40
D. A. Scott <i>et al.</i> (2012)†‡	LUNA-Gran Sasso	400 kV LUNA II	212-392	200

 $\dagger \text{ prompt } \gamma$

‡ activation

* inverse kinematics

Previous ${}^{17}O(p,\gamma){}^{18}F$ S-factor

Direct Capture Calculations

- TEDCA
 - Nuclear cross section calculator (Krauss et al., 1992)
 - Potentials used to calculate DC contribution
- Zero scattering potential used
- Spectroscopic factors (C²S) from literature
 - Polsky et al. (1969), Landre et al. (1989), Kontos et al. (2012)
- TEDCA cross sections \rightarrow DC branching ratios
- GEANT4 simulations of DC γ -cascade

$\gamma\gamma$ -Coincidence

HPGe Peak Efficiency

Coincidence: MC vs. Data

Coincidence Correction Factor

Monte Carlo Experimental Estimates

- Monte Carlo code written to estimate Q, texp
- Code solves:

$$Y = \frac{N_{10}}{N_{\rho}\eta_{10}^{Ge,P} f_{\gamma}^{DC}} = \int_{E_{\rho}^{c.m.} - \Delta E}^{E_{\rho}^{c.m.}} \frac{\sigma^{DC}(E)}{\epsilon_{eff}} dE$$

- Split experiment into two phases
 - High energy phase:

E^{*lab*}_p = 215, 245, 275, 300, 325 keV

Low energy phase:

 $E_p^{lab} = 125, 155, 185 \text{ keV}$

Laboratory for Experimental Nuclear Astrophysics

Projected DC Count Rate

Matthew Q. Buckner

Projected Charge Accumulation

Target Testing and Longevity

• $\omega\gamma$ = 13.0 \pm 1.5 meV - Kontos *et al.* (2012)

• $\omega \gamma = 13.7 \pm 2.2 \text{ meV}$ - Fox *et al.* (2005)

- ¹⁸O target tests \rightarrow Q > 45 C per target Buckner *et al.* (2012)
- ¹⁷O target \rightarrow Q \leq 30 C per target (conservative)

Projected Target Number

Target Fabrication

- Ultra-pure tantalum substrate
- Etched in acid bath
- Resistively heated in vacuum
- Anodized in ¹⁷O-enriched water

Experiment Progress

Experimental Hurdles

- JN overhaul/optimization
- ECR control upgrade
- Plasma chamber heat sink

Low Energy Phase (ECRIS)

- ECR ion source LabVIEW control
 - extended to MW, H₂, magnet
- Upgraded ion source benchmarked
 <u>3.0 mA</u>

• 24/7 acquisition scheduled for July

Conclusion

- ¹⁸F critical to studying classical novae
- Improved ${}^{17}O(p,\gamma){}^{18}F$ rates necessary
- Direct capture dominates reaction rate
- LENA facility ideal for low-energy measurement
- Poised to begin ECR phase of experiment
- Improved rates have broad ramifications
 - Classical nova models
 - Explosive hydrogen burning
 - Stellar evolution & Galactic chemical evolution

Acknowledgements

- Special Thanks...
 - Professors Christian Iliadis, Tom Clegg, Art Champagne
 - Graduates John Cesaratto, Rich Longland, Joseph Newton
 - Post-docs Chris Howard, Anne Sallaska
 - Students Stephen Daigle, Keegan Kelly
 - Duke Technical Staff and UNC Machine Shop
- Supported in part by the US Department of Energy under Contract no. DE- FG02-97ER41041.
- Additional support by the DOE NNSA Stewardship Science Graduate Fellowship under Grant no. DE-FC52-08NA28752.

References

- M. Q. Buckner, C. Iliadis, J. M. Cesaratto, C. Howard, T. B. Clegg, A. E. Champagne, and S. Daigle, *Phys. Rev. C* 86 (2012) 065804.
- [2] J. Casanova, J. Jose, E. Garcia-Berro, S. N. Shore, and A. C. Calder, Nature 478 (2011) 492.
- [3] J. M. Cesaratto, A. E. Champagne, T. B. Clegg, M. Q. Buckner, R. C. Runkle, and A. Stefan, Nucl. Instrum. Methods A 623 (2010) 888.
- [4] A. Chafa et al. Phys. Rev Lett. 95 (2005) 031101.
- [5] A. Chafa et al., *Phys. Rev. C* **75** (2007) 035810.
- [6] A. Coc, M. Hernanz, J. Jose, and J.-P. Thibaud, Astron. Astrophys. 357 (2000) 561.
- [7] L. Downen et al. Astrophys. J. 762 (2013) 105.
- [8] C. Fox et al., Phys. Rev. Lett. 93 (2004) 081102.
- [9] C. Fox et al. Phys. Rev. C 71 (2005) 055801.
- [10] M. Hernanz, J. Jose, A. Coc, and J. Isern, Astrophys. J. Lett. 465 (1999) 27.
- [11] M. Hernanz, J. Jose, A. Coc, J. Gomez-Gomar, and J. Isern, Astrophys. J. 526 (1999) L97.
- [12] J. Gomez-Gomar, M. Hernanz, J. Jose, and J. Isern, Mon. Not. R. Astron. Soc. 296 (1998) 913.
- [13] F. Gyngard et al. Astrophys. J. 717 (2010) 107.
- [14] U. Hager et al. Phys. Rev. C 85 (2012) 035803.
- [15] M. Hernanz and J. Jose, New Astron. Rev. 48 (2004) 35.

References continued

- [16] J. Hoefs, "Stable Isotope Geochemistry" (Springer, 2009).
- [17] I. Iben, Jr. and M. Y. Fujimoto, "The evolution of nova-producing binary stars", "Classical Novae", 2nd ed., edited by M. F. Bode and A. Evans (Cambridge Univ. Press, Cambridge, England, 2008).
- [18] C. Iliadis et al., Astrophys. J. Supp. 142 (2002) 105.
- [19] C. Iliadis and M. Wiescher, Phys. Rev. C 69 (2004) 064305.
- [20] C. Iliadis, "Nuclear Physics Stars" (Wiley-VCH, 2007).
- [21] J. Jose and M. Hernanz, Astrophys. J. 494 (1998) 680.
- [22] J. Jose, M. Hernanz, and C. Iliadis, Nucl. Phys. A 777 (2006) 550.
- [23] A. Kontos et al. Phys. Rev. C 86 (2012) 055801.
- [24] A. Kovetz and D. Prialnik, Astrophys. J. 291 (1985) 812.
- [25] R. P. Kraft, Astrophys. J. 139 (1964) 457.
- [26] H. Krauss, K. Gru?n, T. Rauscher, and H. Oberhummer, computer code TEDCA (TU Wien, Vienna, Austria, 1992).
- [27] G. S Kutter and W. M. Sparks, Astrophys. J. 321 (1987) 386.
- [28] V. Landre et al., Phys. Rev. C 40 (1989) 1972.
- [29] J. R. Newton et al. Phys. Rev. C 81 (2010) 045801.
- [30] L. Nittler and P. Hoppe, |emphAstrophys. J. 631 (2005) L89.

References continued

- [31] L. M. Polsky et al. Phys. Rev. 186 (1969) 966.
- [32] D. Prialnik and A. Kovetz, Astrophys. J. 281 (1984) 367.
- [33] D. Prialnik and A. Kovetz, Astrophys. J. 445 (1995) 789.
- [34] C. E. Rolfs and W. S. Rodney, "Cauldrons in the Cosmos" (Univ. Chicago Press, 1988).
- [35] Rosner et al. Astrophys. J. 562 (2001) L177.
- [36] D. A. Scott et al. Phys. Rev. Lett. 109 (2012) 202501.
- [37] W. M. Sparks and G. S Kutter, Astrophys. J. 321 (1987) 394.
- [38] S. Starrfield, J. W. Truran, W. M. Sparks, and G. S. Kutter, Astrophys. J. 176 (1972) 169.
- [39] S. Starrfield, J. W. Truran, M. Wiescher, and W. M. Sparks, Mon. Not. R. Astron. Soc. 296 (1998) 502.
- [40] S. Starrfield, C. Iliadis, and W. R. Hix, "Thermonuclear processes", "Classical Novae", 2nd ed., edited by M. F. Bode and A. Evans (Cambridge Univ. Press, Cambridge, England, 2008).
- [41] M. F. Walker, PASP 66 (1954) 230.
- [42] M. Wang et al. CPC(HEP and NP) 36 (2012) 1603.
- [43] B. Warner, "Cataclysmic Variable Stars", Cambridge Univ. Press, Cambridge, 1995.
- [44] B. Warner, "Properties of novae: an overview", "Classical Novae", 2nd ed., edited by M. F. Bode and A. Evans (Cambridge Univ. Press, Cambridge, England, 2008).

Supernova Type la

- WD exceeds Chandrasekhar mass limit
 - $M_{\text{WD}}\approx 1.44~M_{\odot}$
- No H or He in outburst spectrum
- System disrupted
- Classical nova SN la scenario?
 - Usually more mass lost than accreted
 - Super soft X-ray source
 - WD does not cool after nova
 - Accretion balances burning
 - Mass exceeds limit

Effective Stopping Power

Classical Nova Grains

- IR frequencies indicate grain formation
- CO novae have dust forming phase
 - ONe novae not prolific dust creators
- O-rich grains constrain:
 - Nova type and WD mass
 - Stellar evolution models
 - Galactic chemical evolution
 - Mixing processes during TNR
- O-rich nova grains rare

Classical Nova Grains

- Nova grain candidates
 - ¹⁷O-rich and ¹⁸O-poor
- T54 and C4-8 consistent with nova source

Matthew Q. Buckner