Nuclear Physics Reactions of Astrophysical Importance

Patrick O'Malley Colorado School of Mines NNSA Stewardship Science Graduate Fellowship Alumni July 27, 2012

Outline

•Nuclear Physics and Astrophysics

•The Big Bang

- ⁷Li abundance problem
 Observations
 - Model predictions

Search for ⁷Be+d resonance Experimental Setup Results

Conclusions

Origin of Elements

- •Big Bang? •What formed and how?
- •Stellar Nucleosynthesis? •What processes form what elements?
- •Heavy Elements •r-process? •rp-process

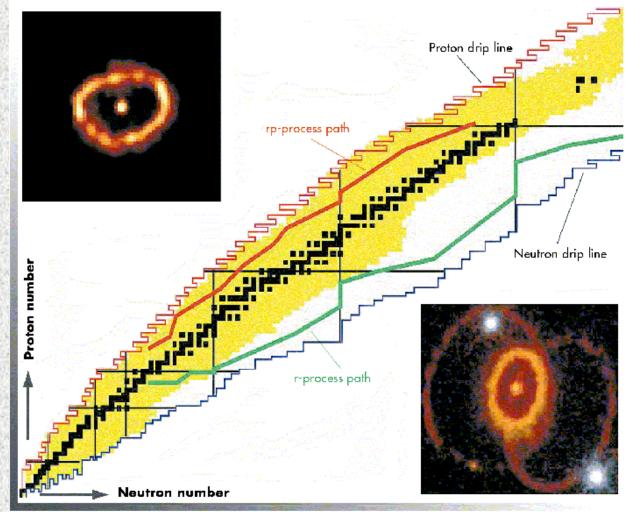


Figure taken from http://ns.ph.liv.ac.uk/~mc/my_research/mass_measurements.html

0.0.1	A STATE OF STATE		The state of the second	In the second	Will Base	C. Carles and
Qui	arks Neutron	Hydrogen nu	cleus Hydroge	n atom Prot	ogalaxy	and the second second
NS			ALL PLANTER			
Electron	P	roton He	lium nucleus	Helium atom		and the second
17	he have					al de
				282		1 <u> </u>
2 2 9	-> //		and the second second			Mart
6.00		FRIA	RANC	THEOR		Galax
1.1.0		1500	DAILO			and the second second
TIME				A GAR		PRESENT
BEGINS	7 0	SE SE			A CALCULAR STREET	
	Ő		A CONTRACTOR			10.00
Time 10 ⁻⁴³ sec.	10 ⁻³² sec. 10 ²⁷ °C	10 ⁻⁶ sec. 10 ¹³ °C	3 min. 10 ⁸ °C	300,000 yrs. 10,000°C	1 billion yrs. -200°C	15 billion yrs. -270°C
Temperature	CONTRACTOR OF THE	Section and the section of the	T-DERING INC.	Electrons	C Gravity makes	As galaxies
1 The cosmos goes through	2 Post-inflation, the universe	3 A rapidly cooling	4 Still too hot to form into	O combine with	hydrogen and	cluster
a superlast "inflation,"	is a seething, hot soup of	cosmos permits quarks to	atoms, charged electrons and	protons and neutrons to form	helium gas coalesce to form	together under gravity, the first
expanding from	electrons.	clump into	protons prevent	atoms, mostly	the giant clouds that will become	stars die and spe heavy elements
the size of an atom to that of a	quarks and other	protons and neutrons	light from shining: the	hydrogen and helium. Light	galaxies; smaller	into space; these
grapefruit in a	particles	ALL STREAM AND	universe is a	can finally shine	clumps of gas collapse to form	will eventually form into new
tiny fraction		Sector Sector	superhot fog		the first stars	stars and planets
tiny fraction of a second	THE	· · ·	supernot tog			

.

0

C

Support for the Big Bang

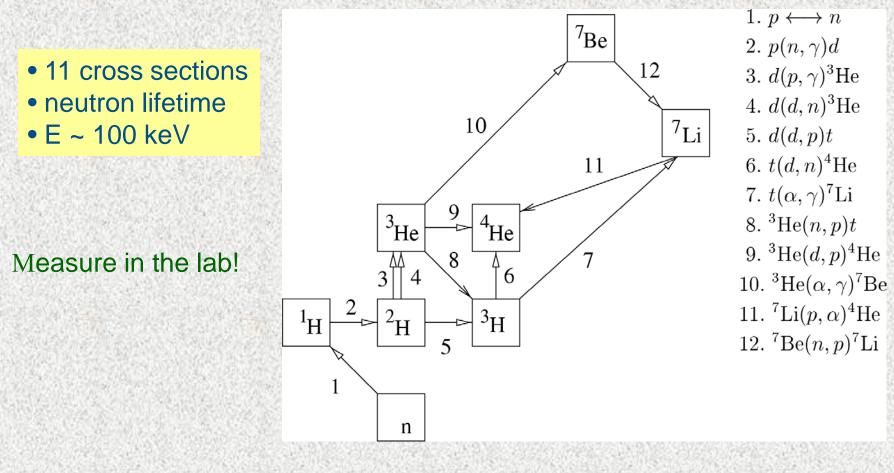
• The universe does in fact exist

 Hubble's Law – galaxies are moving away at speeds proportional to their distance from us

• Cosmic microwave background - ~2.7 K

Big Bang Nucleosynthesis

- Standard Model of Particle Physics
- General Relativity
- Homogeneity and Isotropy
- Nuclear Cross Sections


single free parameter: Baryon Density (or η = baryon-to-photon ratio)

- Determine **ŋ**
- Compare to astronomical observations of abundances
- Compare to other cosmological studies (e.g. CMB)

courtesy of Carl Brune, private communication

The Canonical Reaction Network

Inverse reactions also included

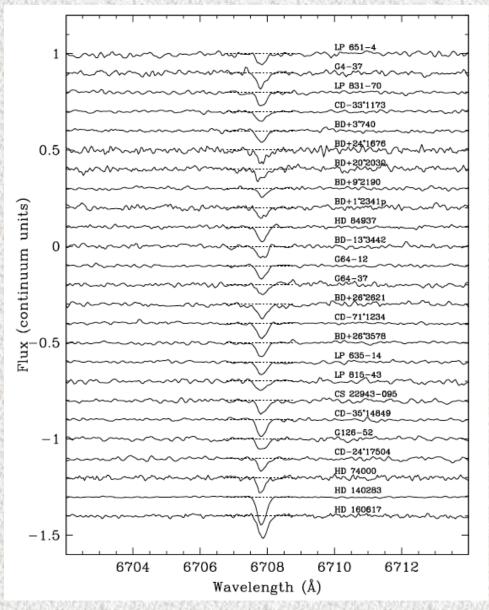
courtesy of Carl Brune, private communication

Observations?

 Lithium abundances are measured for Population II stars

 Stars with low metallicity formed from gases representative of the post big bang universe

•Look for a doublet peak around 670.7 nm


•Characteristic atomic lithium line

•6Li and 7Li differentiated only for a few stars

•Location of centroid of doublet determines relative abundances

•Abundances fit as a function of metallicity

•Extrapolate to 0 metallicity for BB abundance

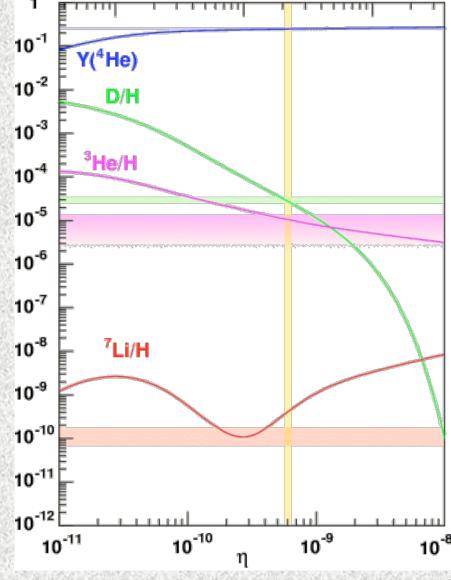
S.G. Ryan, J.E. Norris, T.C. Beers, Astrophys. J. 523 1999

WMAP

•Wilkinson Anisotropy Probe (WMAP) is a deep space satellite used to measure the tiny fluctuations in the CMB

•Fluctuations in the CMB correlate to fluctuations in the quark-gluon plasma

•WMAP was able to further constraint the baryonic density from the previously used range of $0.0044 < \Omega_b h^2 < 0.025$:


 $\Omega_b^{WMAP} h^2 = 0.0227 \pm 0.0006$ $\eta = 6.23 \pm 0.17 \times 10^{-10}$

- Hydrogen and helium abundances were reproduced well by BBN calculations
- Lithium abundances are not
 - Extrapolated observations yield:

$$^{7}Li/_{H} = 1.23^{+0.34}_{-0.16} \times 10^{-10}$$

• WMAP constrained BBN calculations yield:

$$^{7}Li/_{H} = 5.24^{+0.71}_{-0.67} \times 10^{-10}$$

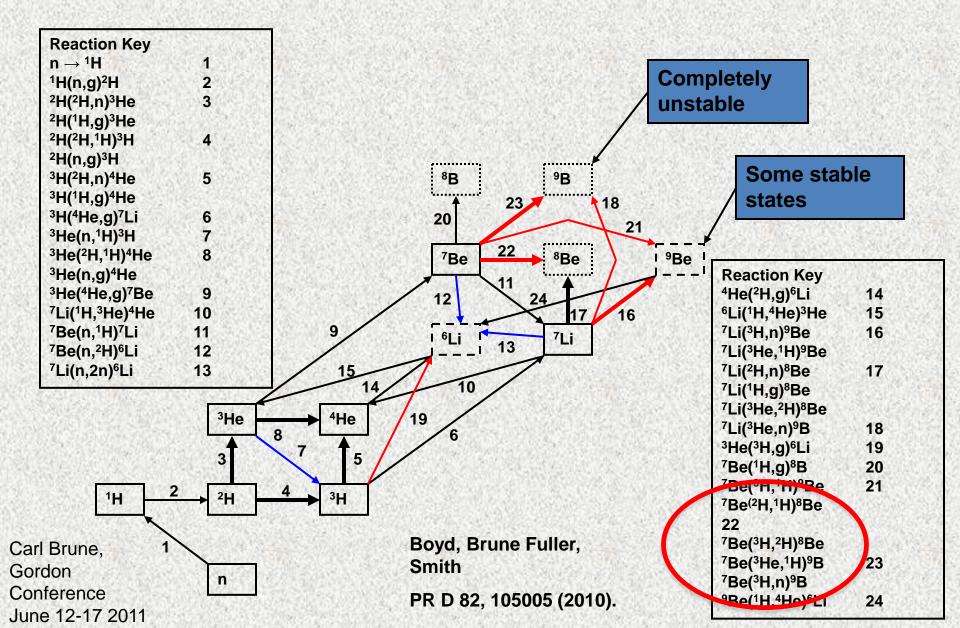
from http://www.einsteinonline.info/en/spotlights/BBN/index.html

Why?

•Several explanations for this have been proposed:

- Cosmological abundance of lithium is altered in the subsequent evolution
 Perhaps convection in the layers of the star are pulling the lithium to lower levels where it gets destroyed
- New Physics

•Variation of the strong interaction in the early universe over time

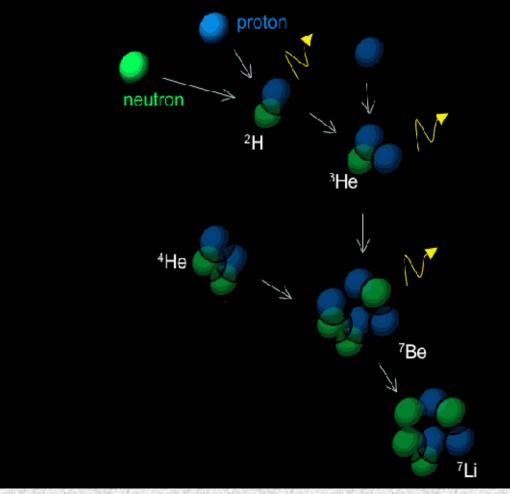

•Decays of heavier meta-stable particles that inject additional neutrons which could increase the rates of ⁷Be+n

Nuclear Physics

•Resonant enhancement of known reaction rates

•A more complete system of reactions should be included

Extended BBN Reaction Network



⁷Li's parent

 A proposed nuclear physics solution is a possible resonance in ⁹B that would enhance the burning of ⁷Be in ⁷Be(d,p) and ⁷Be(d,γ) reactions and reduce the number of ⁷Li from ⁷Be decays.

> • If ⁷Be were destroyed faster then it may explain the discrepancy between calculations and observation

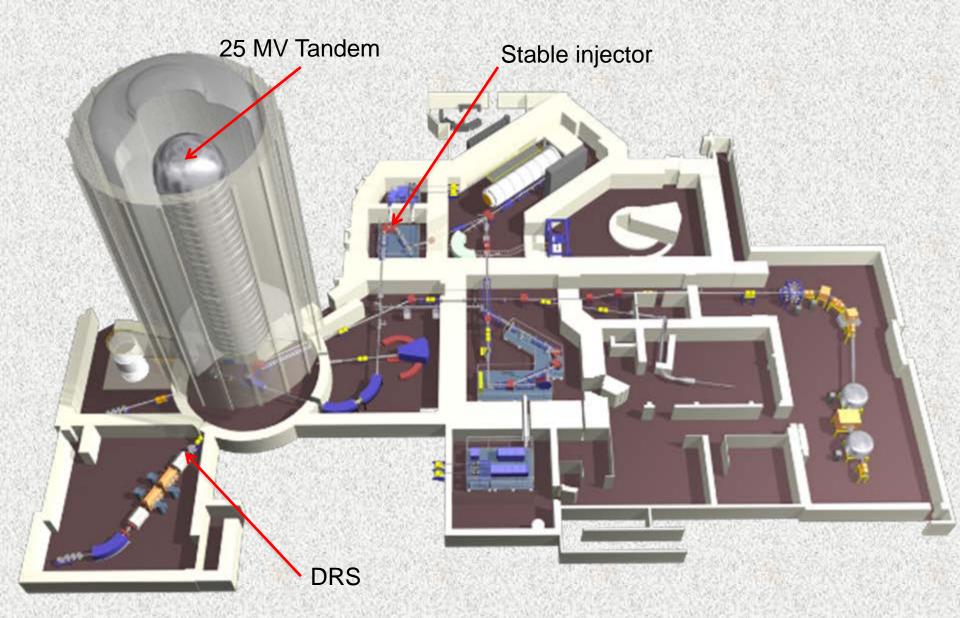
• If the known ⁹B 5/2⁺ level at $E_x=16.7$ MeV has a resonance energy and deuteron decay width in the range $(E_r, \Gamma_d)=(170-220, 10-40)$ keV, it could be a candidate for such a resonance.

Carl Brune, private communication

⁷Li's parent

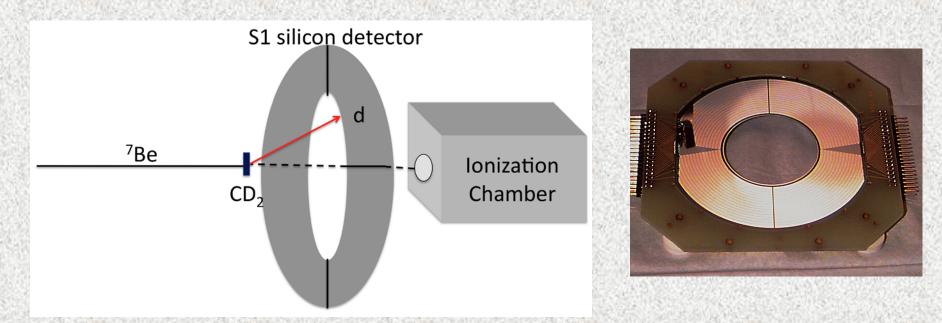
⁷Be(d,p)2α rate was directly measured before by C Angulo *et. al.*•C. Angulo et al., Astrophys. J. 630, L105 (2005).

• Assumptions in prior work may not have been valid and experiment may not have been sensitive to protons in the range of importance


•R. H. Cyburt and M. Pospelov, astro-ph/0906.4373, C. Angulo et al., Astrophys. J. 630, L105 (2005)

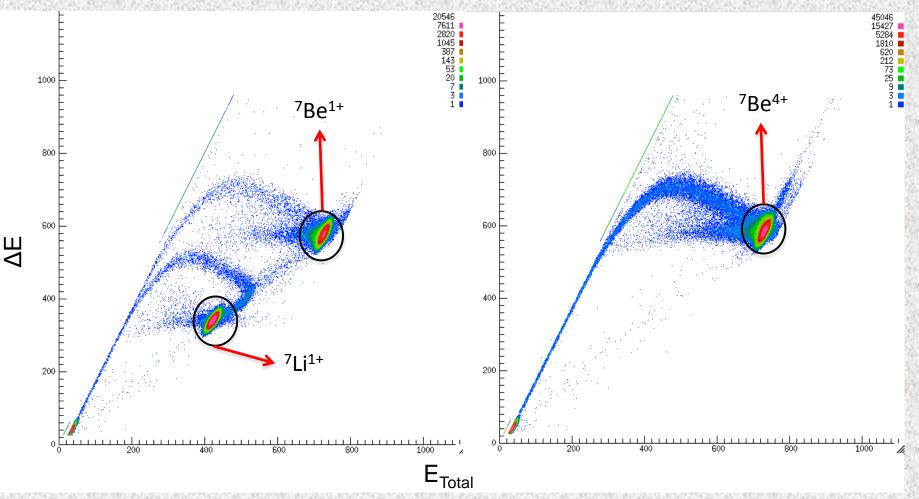
• A new measurement

• Elastic scattering of deuterons could measure properties of such a resonance


•Bombarding a thick target CD₂ target with a ⁷Be beam will allowed energies around the proposed resonance to be studied

Holifield Radioactive Ion Beam Facility

⁷Be(d,d)


This reaction could measure the width of the ~200 keV resonance

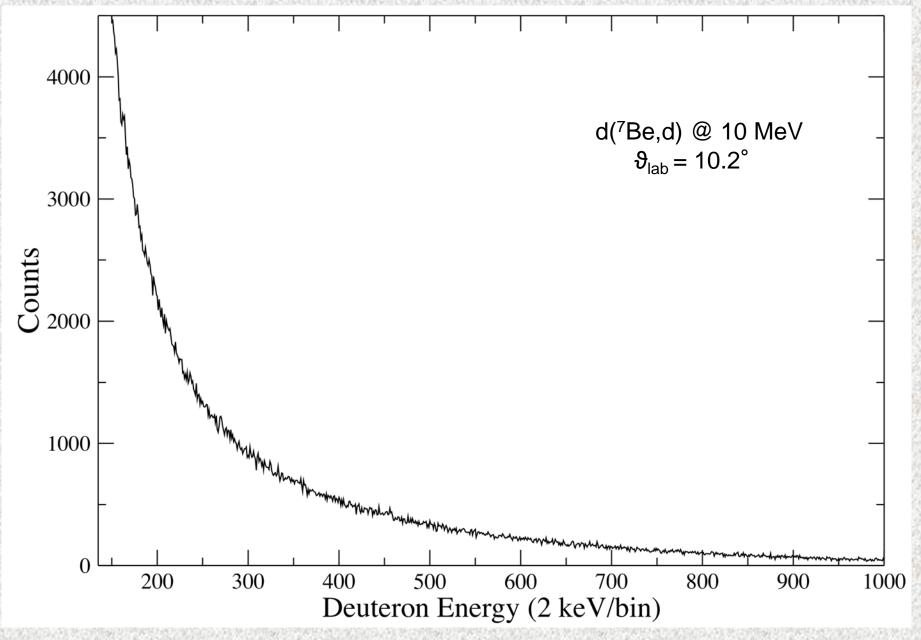
• ⁷Be beam was bombarded a CD_2 target at an average intensity of 50,000 pps

- The target was rotated to 50° making it effectively 2.52 mg/cm² thick
- \bullet Outgoing particles were detected in the MINI silicon detector covering lab angles 6 $^\circ$ -12 $^\circ$
 - 12.9 25.8 in the center of mass

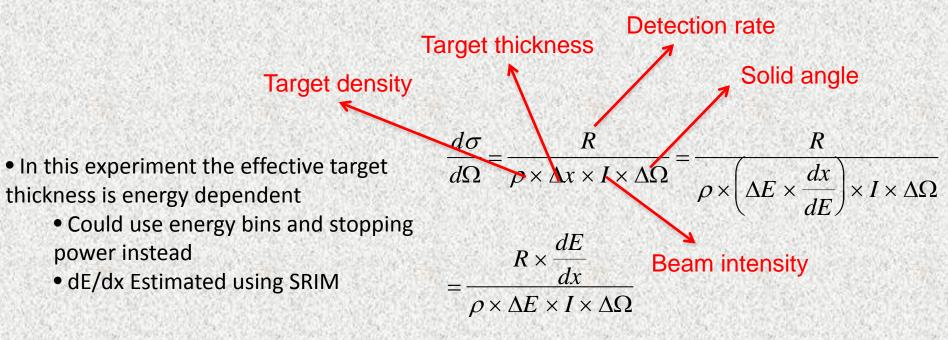
⁷Be(d,d)

An ionization chamber was utilized downstream to measure the beam purity/rate
 By stripping to charge state 4⁺, a pure beam of ⁷Be was achieved

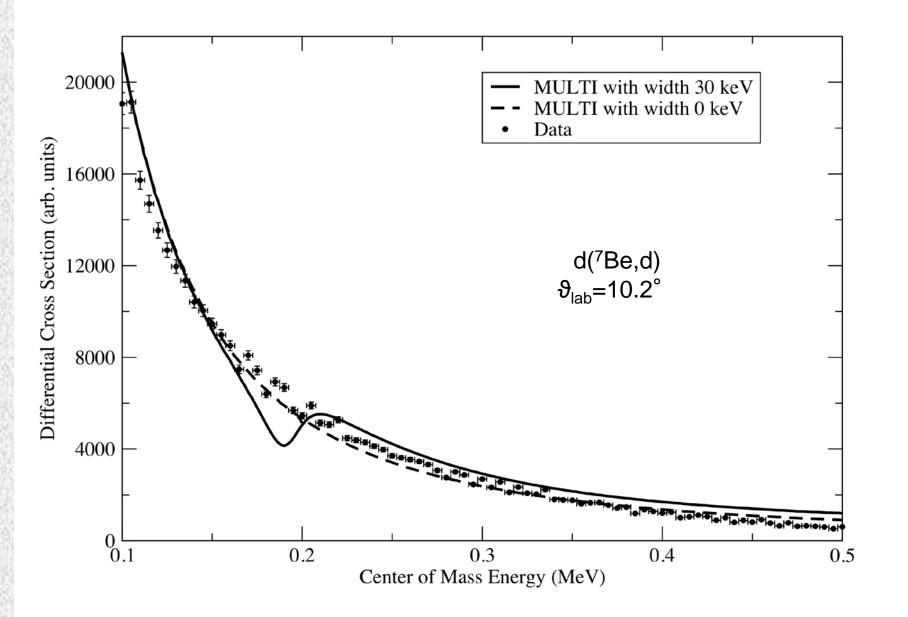
R-Matrix in a nutshell


- Main aim of R-matrix theory is to describe scattering states result from interactions of particles
- Divides space into two regions, internal and external regions
 - The boundary of these regions is defined the "channel radius"
- In the external region, only known long range interactions are considered
 - Scattering wave function is approximated by its asymptotic expression
 - Interaction matrices are diagonal
- In the internal region, the system is confined
 - Eigenstates form a discrete basis which can be calculated
 - The scattering wave is expanded over these eigenstates
- R-matrix accounts for all interactions within the nucleus (non diagonal)
 - Also depends on set of boundary conditions
 - Matching with solution in the external region yields scattering matrix

R-Matrix with MULTI


R.O. Nelson, E.G. Bilpuch, and G.E. Mitchell, Nucl. Inst. and Meth. in Phys. Res. A236, 128 (1985).

Data


Corrections

- Several corrections need to be made before comparisons can be made to theoretical calculations
 - Energy loss of deuterons in target
 - Estimated using kinematics code RELKIN in conjunction with STOPIT

• Center of mass conversion:

 $E_{c.m.} = \frac{m_d + M(^{7}Be)}{4M(^{7}Be)\cos^2 \theta_{lab}} E_{d,lab}$

Strategy

- For each strip, perform a least X² normalization to MULTI calculations for ~0 keV width
- Slowly increase width until X² increases by 6.17 to get an upper bound for the width within
- a 95% confidence level
- The upper limit was determined to be the average of that determined from each strip

Laboratory Angles (degrees)	Upper Limit Γ_d (keV) for 3/2 entrance	Upper Limit Γ_d (keV) for 5/2 entrance
6.9	1.1	1.1
7.3	0.4	0.5
7.7	0.6	0.7
8.0	1.1	1.2
8.8	0.8	0.8
9.1	0.8	0.9
10.2	1.5	1.6
11.0	2.4	2.4

Averaging these strips yields an upper limit of **1.06 keV** and **1.10 keV** with a 95% confidence level for the entrance channels of 3/2 and 5/2 respectively

Conclusion

- A proposed solution to the ⁷Li mystery was the existence of a 16.7 MeV resonance in ⁹B
 In order to resolve the discrepancy the resonance width should be greater than 10 keV.
- At ORNL a study of this "resonance" was performed using the ²H(⁷Be,d)⁷Be reaction
 - A thick target technique was used with a 10 MeV beam of ⁷Be
- No such resonance was observed and an upper limit was placed on this resonance of ~1 keV with a 95% confidence level
- Since this upper limit is much smaller than the minimum necessary for this proposed resonance to resolve the discrepancy, this is clearly not the solution
- Other possible solutions need to be studied
 - understanding of the stellar processes that deplete lithium need to be improved.
 - physics beyond the standard BBN model

•Phys. Rev. C 84, 042801(R) (2011)

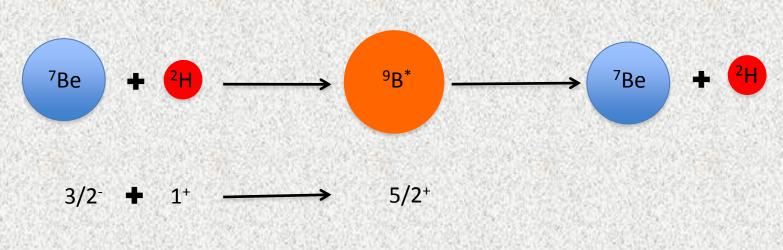
⁷Be+d Thanks!

A. Adekola, J.A. Cizewski, M. Howard, S Strauss *Rutgers University*

D.W. Bardayan, K.Y. Chae, C. Nesaraja, S.D. Pain, M.S. Smith Oak Ridge National Laboratory

> S. Ahn, K.L. Jones, S.T. Pittman, K. Schmitt University of Tennessee

W.A. Peters, I. Spassova Oak Ridge Associated Universities

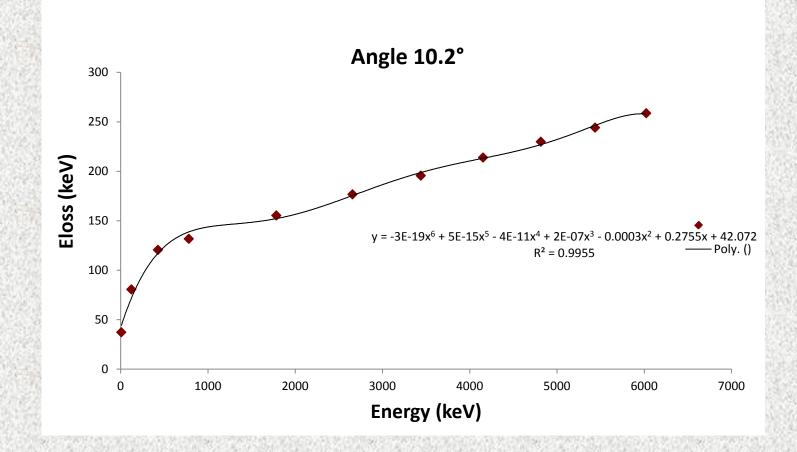

S. Graves, R.L. Kozub, <u>J.F. Shriner</u>, J. Wheeler *Tennessee Technological University*

J. Blackmon, L. Lindhardt, M. Matos, B. Moazen Louisiana State University

*Work supported in part by DOE and NSF

Questions?

Entrance Channel Spin



(1/2, 3/2, 5/2)

- •3/2 and 5/2 entrance spins would require a p-wave transfer to populate this 5/2 resonance
- •1/2 needs an f-wave transfer, which would be much less probable at these energies so it was neglected in the final analysis
- •Need to consider both possible entrance channel spins (3/2 and 5/2) in R-matrix calculations

Energy Loss

- 1. Determined beam energy for various depths in target
- 2. For each depth and detector angle, calculate expected deuteron energy
- 3. Determine energy loss for these deuterons in remaining target thickness
- 4. Plot "measured" energy against energy loss to determine eloss correction function

