Effective Interactions for Nuclear Structure Calculations

Angelo Signoracci

NSCL/MSU

SSGF Annual Meeting, 22 July 2011

《曰》 《聞》 《臣》 《臣》 三臣

Basic Quantum Mechanics

$$H\Psi = E\Psi$$

$$H = T + V = \sum_{i=1}^{A} t(r_i) + \sum_{\substack{i,j=1\\i < j}}^{A} v(\mathbf{r}_i, \mathbf{r}_j) + \dots$$

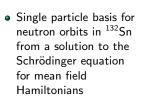
$$H = H_0 + H_1 = [T + V_{mf}] + [V - V_{mf}]$$

$$V_{mf} = \sum_{i=1}^{A} v(\mathbf{r}_i)$$

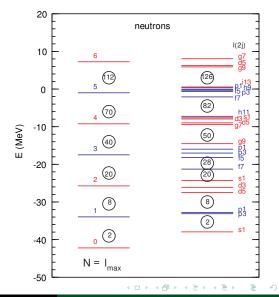
- Schrödinger Equation
- Nuclear Hamiltonian
- *H*₁ can be treated perturbatively
- Mean field potential

э

Motivation



• Empirically, $\hbar\omega$ energy scale is given by the mass (\approx 8 MeV for ¹³²Sn, but \approx 12 MeV for nuclei around A = 30)



Introd		

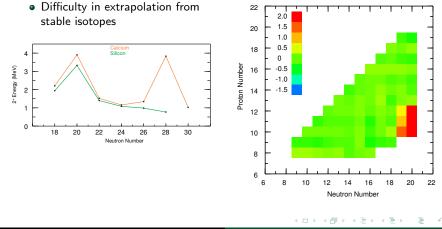
Island of Inversion

⁴²Si

Conclusions

Motivation

 Standard model spaces do not always account for the proper degrees of freedom



trod		

Motivation

- Away from stability
 - Recent and future experiments with rare isotope beams provide new data in regions without reliable theoretical predictions
 - Standard formulation of Configuration Interaction (CI) theory is less practical
 - Renormalization methods, as generally used in literature, do not account for behavior of exotic nuclei
 - Loosely bound orbits are often important valence orbitals
- Develop a new theoretical technique to combine existing procedures in nuclear theory, inluding CI and Energy Density Functional (EDF) methods, to produce reliable calculations outside of standard shell model spaces
- Desire the accuracy of the CI techniques and the generality of EDF methods

uction

⁴²Si

Conclusions

Procedure

- Choose a model space and target nucleus (not necessarily the core)
- Calculate binding energy, single particle energies (SPE), and radial wavefunctions of the target nucleus via Skyrme Hartree-Fock theory
- Convert N³LO interaction (two-body interaction derived from χ EFT and fit to NN scattering data) to a low momentum interaction using v_{lowk} , a similarity transformation in momentum space with a sharp cutoff of 2.0 fm⁻¹
- Renormalize two-body matrix elements (TBME), summing over contributions outside the model space in two different single-particle bases
 - Harmonic Oscillator (HO): HO wavefunctions and single particle energies
 - Skyrme Hartree-Fock (SHF): SHF wavefunctions and single particle energies
- Output TBME are in the form of an effective interaction for CI calculations
- SPE for the effective interaction from Skyrme Hartree-Fock theory are unreliable
- For target nuclei with "doubly magic" behavior, use experimental one-nucleon separation energies; otherwise, parameterize and fit to available data
- S.K. Bogner, R.J. Furnstahl, and A. Schwenk, Prog. Part. Nucl. Phys. **65**, 94 (2010)

(4 回下) イヨト イヨト

Introduction

⁴²Si

Conclusions

Procedure

- Choose a model space and target nucleus (not necessarily the core)
- Calculate binding energy, single particle energies (SPE), and radial wavefunctions of the target nucleus via Skyrme Hartree-Fock theory
- Convert N³LO interaction (two-body interaction derived from χ EFT and fit to NN scattering data) to a low momentum interaction using v_{lowk} , a similarity transformation in momentum space with a sharp cutoff of 2.0 fm⁻¹
- Renormalize two-body matrix elements (TBME), summing over contributions outside the model space in two different single-particle bases
 - Harmonic Oscillator (HO): HO wavefunctions and single particle energies
 - Skyrme Hartree-Fock (SHF): SHF wavefunctions and single particle energies
- Output TBME are in the form of an effective interaction for CI calculations
- SPE for the effective interaction from Skyrme Hartree-Fock theory are unreliable
- For target nuclei with "doubly magic" behavior, use experimental one-nucleon separation energies; otherwise, parameterize and fit to available data

Introduction

⁴²Si

Conclusions

Procedure

- Choose a model space and target nucleus (not necessarily the core)
- Calculate binding energy, single particle energies (SPE), and radial wavefunctions of the target nucleus via Skyrme Hartree-Fock theory
- Convert N³LO interaction (two-body interaction derived from χ EFT and fit to NN scattering data) to a low momentum interaction using v_{lowk} , a similarity transformation in momentum space with a sharp cutoff of 2.0 fm⁻¹
- Renormalize two-body matrix elements (TBME), summing over contributions outside the model space in two different single-particle bases
 - Harmonic Oscillator (HO): HO wavefunctions and single particle energies
 - Skyrme Hartree-Fock (SHF): SHF wavefunctions and single particle energies
- Output TBME are in the form of an effective interaction for CI calculations
- SPE for the effective interaction from Skyrme Hartree-Fock theory are unreliable
- For target nuclei with "doubly magic" behavior, use experimental one-nucleon separation energies; otherwise, parameterize and fit to available data

Introduction

⁴²Si

Conclusions

Procedure

- Choose a model space and target nucleus (not necessarily the core)
- Calculate binding energy, single particle energies (SPE), and radial wavefunctions of the target nucleus via Skyrme Hartree-Fock theory
- Convert N³LO interaction (two-body interaction derived from χ EFT and fit to NN scattering data) to a low momentum interaction using v_{lowk} , a similarity transformation in momentum space with a sharp cutoff of 2.0 fm⁻¹
- Renormalize two-body matrix elements (TBME), summing over contributions outside the model space in two different single-particle bases
 - Harmonic Oscillator (HO): HO wavefunctions and single particle energies
 - Skyrme Hartree-Fock (SHF): SHF wavefunctions and single particle energies

• Output TBME are in the form of an effective interaction for CI calculations

- SPE for the effective interaction from Skyrme Hartree-Fock theory are unreliable
- For target nuclei with "doubly magic" behavior, use experimental one-nucleon separation energies; otherwise, parameterize and fit to available data

Introduction

⁴²Si

Conclusions

Procedure

- Choose a model space and target nucleus (not necessarily the core)
- Calculate binding energy, single particle energies (SPE), and radial wavefunctions of the target nucleus via Skyrme Hartree-Fock theory
- Convert N³LO interaction (two-body interaction derived from χ EFT and fit to NN scattering data) to a low momentum interaction using v_{lowk} , a similarity transformation in momentum space with a sharp cutoff of 2.0 fm⁻¹
- Renormalize two-body matrix elements (TBME), summing over contributions outside the model space in two different single-particle bases
 - Harmonic Oscillator (HO): HO wavefunctions and single particle energies
 - Skyrme Hartree-Fock (SHF): SHF wavefunctions and single particle energies
- Output TBME are in the form of an effective interaction for CI calculations
- SPE for the effective interaction from Skyrme Hartree-Fock theory are unreliable
- For target nuclei with "doubly magic" behavior, use experimental one-nucleon separation energies; otherwise, parameterize and fit to available data

Introduction

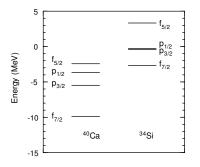
⁴²Si

Conclusions

Procedure

- Choose a model space and target nucleus (not necessarily the core)
- Calculate binding energy, single particle energies (SPE), and radial wavefunctions of the target nucleus via Skyrme Hartree-Fock theory
- Convert N³LO interaction (two-body interaction derived from χ EFT and fit to NN scattering data) to a low momentum interaction using v_{lowk} , a similarity transformation in momentum space with a sharp cutoff of 2.0 fm⁻¹
- Renormalize two-body matrix elements (TBME), summing over contributions outside the model space in two different single-particle bases
 - Harmonic Oscillator (HO): HO wavefunctions and single particle energies
 - Skyrme Hartree-Fock (SHF): SHF wavefunctions and single particle energies
- Output TBME are in the form of an effective interaction for CI calculations
- SPE for the effective interaction from Skyrme Hartree-Fock theory are unreliable
- For target nuclei with "doubly magic" behavior, use experimental one-nucleon separation energies; otherwise, parameterize and fit to available data
- S.K. Bogner, R.J. Furnstahl, and A. Schwenk, Prog. Part. Nucl. Phys. 65, 94 (2010)

Application to *sdpf* Model Space

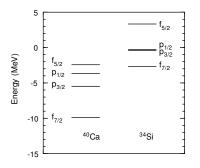


Model Space Neutron Orbits in SHF Basis

- Model space is sd protons and pf neutrons (seven orbits total)
- Two target nuclei ³⁴Si and ⁴⁰Ca are used in both bases (four interactions total)
- New interaction, SDPF-U, has different TBME for $Z \le 14$ and $Z \ge 15$ to account for different behavior based on number of protons (i.e. based on how exotic the nucleus is)
- The neutron-neutron pairing elements are reduced by 300 keV for the $Z \le 14$ interaction to better reproduce data

 Nowacki and Poves, Phys. Rev. C 79 014310 (2009)

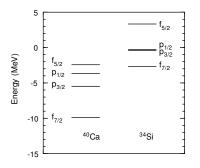
Application to *sdpf* Model Space



Model Space Neutron Orbits in SHF Basis

- Model space is sd protons and pf neutrons (seven orbits total)
- Two target nuclei ³⁴Si and ⁴⁰Ca are used in both bases (four interactions total)
- New interaction, SDPF-U, has different TBME for $Z \le 14$ and $Z \ge 15$ to account for different behavior based on number of protons (i.e. based on how exotic the nucleus is)
- The neutron-neutron pairing elements are reduced by 300 keV for the $Z \le 14$ interaction to better reproduce data
- Nowacki and Poves, Phys. Rev. C 79 014310 (2009)

Application to *sdpf* Model Space

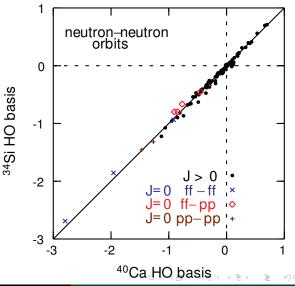


Model Space Neutron Orbits in SHF Basis

- Model space is sd protons and pf neutrons (seven orbits total)
- Two target nuclei ³⁴Si and ⁴⁰Ca are used in both bases (four interactions total)
- New interaction, SDPF-U, has different TBME for $Z \le 14$ and $Z \ge 15$ to account for different behavior based on number of protons (i.e. based on how exotic the nucleus is)
- The neutron-neutron pairing elements are reduced by 300 keV for the $Z \le 14$ interaction to better reproduce data
- Nowacki and Poves, Phys. Rev. C 79 014310 (2009)

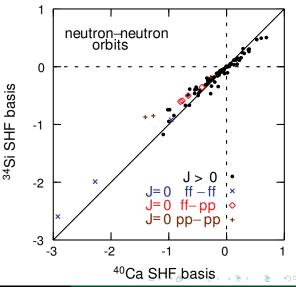
Results for matrix elements in MeV

- Pairing matrix elements are singled out due to their importance in ground state properties of even-even nuclei
- In HO basis, change in nucleus does not affect neutron-neutron pairing matrix elements (diagrams involving excitations of protons are unlinked)



Results for matrix elements in MeV

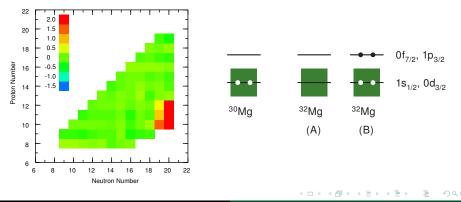
- Pairing matrix elements are singled out due to their importance in ground state properties of even-even nuclei
- Pairing matrix elements exhibit a general trend towards reduction in the SHF basis and are reduced by 214 keV on average for the ³⁴Si target relative to the ⁴⁰Ca target using a microscopic procedure



⁴²Si

Conclusions

- For exotic isotopes around Z = 11, 2p2h ($2\hbar\omega$) configurations are important at N = 20
- Nuclei with significant contributions from $2\hbar\omega$ configurations in the ground state have been observed for $N\ge 19$ and $Z\le 13$
- Experimental boundaries may be outside the reach of current rare isotope facilities



- Theoretical calculations can predict the properties of unknown exotic isotopes
- Model space composed of sd protons and $0d_{3/2}, 1s_{1/2}, 0f_{7/2}, 1p_{3/2}, 1p_{1/2}$ neutrons
- To reproduce low-energy behavior of nuclei throughout the island of inversion region with one interaction, accurate SPE and reasonable treatment of three-body forces are necessary
- Thirteen parameters are included: eight for SPE, four for three-body forces, and one phenomenological overall normalization
- \bullet Normalization reduces the strength of the interaction by $\approx 10\%$ to reproduce 2^+ states in even-even nuclei
- 43 states are implemented in an iterative fitting procedure
- rms deviation is 370 keV

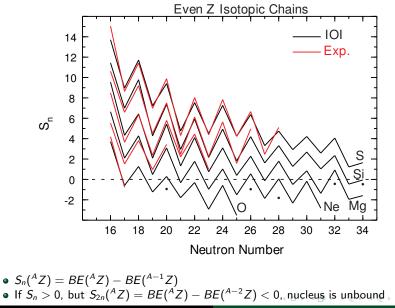
- Theoretical calculations can predict the properties of unknown exotic isotopes
- Model space composed of sd protons and $0d_{3/2}, 1s_{1/2}, 0f_{7/2}, 1p_{3/2}, 1p_{1/2}$ neutrons
- To reproduce low-energy behavior of nuclei throughout the island of inversion region with one interaction, accurate SPE and reasonable treatment of three-body forces are necessary
- Thirteen parameters are included: eight for SPE, four for three-body forces, and one phenomenological overall normalization
- \bullet Normalization reduces the strength of the interaction by $\approx 10\%$ to reproduce 2^+ states in even-even nuclei
- 43 states are implemented in an iterative fitting procedure
- rms deviation is 370 keV

- Theoretical calculations can predict the properties of unknown exotic isotopes
- Model space composed of sd protons and $0d_{3/2}, 1s_{1/2}, 0f_{7/2}, 1p_{3/2}, 1p_{1/2}$ neutrons
- To reproduce low-energy behavior of nuclei throughout the island of inversion region with one interaction, accurate SPE and reasonable treatment of three-body forces are necessary
- Thirteen parameters are included: eight for SPE, four for three-body forces, and one phenomenological overall normalization
- \bullet Normalization reduces the strength of the interaction by $\approx 10\%$ to reproduce 2^+ states in even-even nuclei
- 43 states are implemented in an iterative fitting procedure
- rms deviation is 370 keV

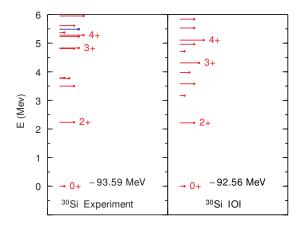
- Theoretical calculations can predict the properties of unknown exotic isotopes
- Model space composed of sd protons and $0d_{3/2}, 1s_{1/2}, 0f_{7/2}, 1p_{3/2}, 1p_{1/2}$ neutrons
- To reproduce low-energy behavior of nuclei throughout the island of inversion region with one interaction, accurate SPE and reasonable treatment of three-body forces are necessary
- Thirteen parameters are included: eight for SPE, four for three-body forces, and one phenomenological overall normalization
- \bullet Normalization reduces the strength of the interaction by $\approx 10\%$ to reproduce 2^+ states in even-even nuclei
- 43 states are implemented in an iterative fitting procedure
- rms deviation is 370 keV

- Theoretical calculations can predict the properties of unknown exotic isotopes
- Model space composed of sd protons and $0d_{3/2}, 1s_{1/2}, 0f_{7/2}, 1p_{3/2}, 1p_{1/2}$ neutrons
- To reproduce low-energy behavior of nuclei throughout the island of inversion region with one interaction, accurate SPE and reasonable treatment of three-body forces are necessary
- Thirteen parameters are included: eight for SPE, four for three-body forces, and one phenomenological overall normalization
- \bullet Normalization reduces the strength of the interaction by $\approx 10\%$ to reproduce 2^+ states in even-even nuclei
- 43 states are implemented in an iterative fitting procedure
- rms deviation is 370 keV

Systematic Trends

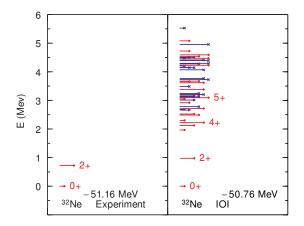


Representative Nuclei



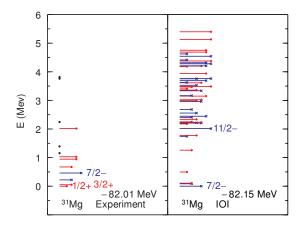
• Towards stability by the removal of four neutrons

Representative Nuclei



- Into the island of inversion (pprox 20% of the wavefunction in standard configuration)
- Comparison to data is often difficult because few states are known

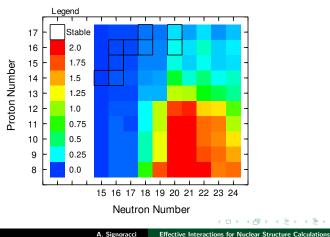
Representative Nuclei



- Includes data from D. Miller et al., Phys. Rev. C 79, 054306 (2009)
- Lowest four experimental states were included in the fit

Ground State Occupations

- A single configuration has a $1\hbar\omega$ excitation if an *sd* neutron is promoted into the *pf* shell (1*p*1*h* at *N* = 20)
- Many-body states are linear combinations of many configurations \to average $\hbar\omega$ of the ground state is plotted
- Island of inversion represented by red, orange, and yellow boxes

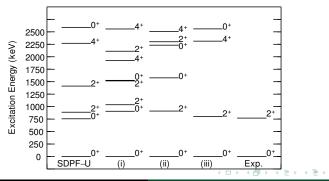


Application to ⁴²Si

- Three different interactions were produced for calculations of ⁴²Si:
 - (i) the interaction from the island of inversion region
 - (ii) same as (i), but with SPE "evolved" to reproduce behavior at ⁴²Si
 - (iii) new interaction in the sdpf model space with ^{42}Si as the target
- Comparison to experiment and to the empirical SDPF-U interaction provides information on the extension of effective interactions away from the target and best method to apply the renormalization procedure

Application to ⁴²Si

- \bullet Three different interactions were produced for calculations of $^{42}{\rm Si:}$
 - (i) the interaction from the island of inversion region
 - (ii) same as (i), but with SPE "evolved" to reproduce behavior at ⁴²Si
 - (iii) new interaction in the sdpf model space with ^{42}Si as the target
- Level density and behavior very different for three cases
- \bullet Experimental determination of 4^+_1 and especially 0^+_2 very important for theoretical conclusions



ヨトィヨト

э

Summary of Applications

• Realistic Basis

- Loosely bound orbits exhibit long tail behavior, reducing the strength of TBME involving those orbits
- Energy of single particle orbits can differ greatly for stable and exotic isotopes
- HO basis leads to a stronger interaction that results in overbinding even in the two particle case, an effect which gets magnified as more particles are added
- A realistic basis is essential for an accurate description of the effective interaction for exotic nuclei as determined by the renormalization of an *NN* interaction

- One hundred nuclei were calculated, with binding energies and low-lying states in good agreement with available experimental data including the 370 keV rms deviation (all comparisons accessible)
- Neutron dripline and boundaries of island of inversion have been determined
- Isotopes in the island of inversion region extend beyond those observed to date
- ⁴²Si
 - $\bullet\,$ Level schemes with three different applications of the method reproduce the known states in $^{42}\mathrm{Si}$
 - Predictions of the 4_1^+ and 0_2^+ states vary significantly
 - Detection will enable the evaluation of different techniques to calculate exotic isotopes

э

Summary of Applications

- Realistic Basis
 - Loosely bound orbits exhibit long tail behavior, reducing the strength of TBME involving those orbits
 - Energy of single particle orbits can differ greatly for stable and exotic isotopes
 - HO basis leads to a stronger interaction that results in overbinding even in the two particle case, an effect which gets magnified as more particles are added
 - A realistic basis is essential for an accurate description of the effective interaction for exotic nuclei as determined by the renormalization of an *NN* interaction

- One hundred nuclei were calculated, with binding energies and low-lying states in good agreement with available experimental data including the 370 keV rms deviation (all comparisons accessible)
- Neutron dripline and boundaries of island of inversion have been determined
- Isotopes in the island of inversion region extend beyond those observed to date
- ⁴²Si
 - $\bullet\,$ Level schemes with three different applications of the method reproduce the known states in $^{42}{\rm Si}$
 - Predictions of the 4⁺₁ and 0⁺₂ states vary significantly
 - Detection will enable the evaluation of different techniques to calculate exotic isotopes

4 E b

Summary of Applications

- Realistic Basis
 - Loosely bound orbits exhibit long tail behavior, reducing the strength of TBME involving those orbits
 - Energy of single particle orbits can differ greatly for stable and exotic isotopes
 - HO basis leads to a stronger interaction that results in overbinding even in the two particle case, an effect which gets magnified as more particles are added
 - A realistic basis is essential for an accurate description of the effective interaction for exotic nuclei as determined by the renormalization of an *NN* interaction
- Island of Inversion Region
 - One hundred nuclei were calculated, with binding energies and low-lying states in good agreement with available experimental data including the 370 keV rms deviation (all comparisons accessible)
 - Neutron dripline and boundaries of island of inversion have been determined
 - Isotopes in the island of inversion region extend beyond those observed to date
- ⁴²Si
 - $\bullet\,$ Level schemes with three different applications of the method reproduce the known states in $^{42}{\rm Si}$
 - Predictions of the 4_1^+ and 0_2^+ states vary significantly
 - Detection will enable the evaluation of different techniques to calculate exotic isotopes

Conclusion and Outlook

Overall Methodology

- The microscopic N³LO interaction can be renormalized into an effective interaction in the nuclear medium using v_{lowk} and many-body perturbative techniques with a realistic single particle basis determined from Skyrme Hartree-Fock theory
- This effective interaction can be directly used as the input to a CI calculation, with single particle energies taken from Skyrme Hartree-Fock
- Interactions do not need to be determined empirically
- Single particle energies from EDF methods are unreliable and need to be improved
- Basis and target nucleus used in renormalization are important and must be chosen judiciously
- Outlook
 - More calculations outside of standard model spaces (⁶⁸Ni, ²⁰C, ...)
 - Addition of three-body forces at the effective two-body level as in Phys. Lett. B 695, 507 (2011)

Conclusion and Outlook

Overall Methodology

- The microscopic N³LO interaction can be renormalized into an effective interaction in the nuclear medium using v_{lowk} and many-body perturbative techniques with a realistic single particle basis determined from Skyrme Hartree-Fock theory
- This effective interaction can be directly used as the input to a CI calculation, with single particle energies taken from Skyrme Hartree-Fock
- Interactions do not need to be determined empirically
- Single particle energies from EDF methods are unreliable and need to be improved
- Basis and target nucleus used in renormalization are important and must be chosen judiciously

Outlook

- More calculations outside of standard model spaces (⁶⁸Ni, ²⁰C, ...)
- Addition of three-body forces at the effective two-body level as in Phys. Lett. B 695, 507 (2011)

1

Acknowledgements

- Guidance Committee: Alex Brown (advisor), Carlo Piermarocchi, Jon Pumplin, Michael Thoennessen, Vladimir Zelevinsky
- Morten Hjorth-Jensen
- DOE NNSA SSGF program

 $\Xi \rightarrow$

Additional Information

Configuration Interaction (CI) Theory

 \bullet Limited to specific regions of the nuclear chart, mainly by mass

General Procedure:

- Select a doubly magic nucleus as the core and treat it as vacuum
- Select a model space outside of the core
- Determine single particle energies (SPE) from experimental single particle states
- Determine two body matrix elements (TBME) from renormalization procedure
- Can treat SPE and TBME as parameters and fit them to best reproduce data
- TBME of the form $\langle (ab)J|V|(cd)J\rangle$ where V is the interaction and a,b,c,d refer to orbits in the model space
- Advantages
 - Accuracy (pprox 150 keV rms)
 - Simple wavefunctions
- Disadvantages
 - Limited in excitation energy and mass
 - Need effective SPE and TBME for good results
 - Different parameters for each model space; need to perform fit for each region of interest

Configuration Interaction (CI) Theory

- Limited to specific regions of the nuclear chart, mainly by mass
- General Procedure:
 - Select a doubly magic nucleus as the core and treat it as vacuum
 - Select a model space outside of the core
 - Determine single particle energies (SPE) from experimental single particle states
 - Determine two body matrix elements (TBME) from renormalization procedure
 - Can treat SPE and TBME as parameters and fit them to best reproduce data
 - TBME of the form $\langle (ab)J|V|(cd)J\rangle$ where V is the interaction and a,b,c,d refer to orbits in the model space
- Advantages
 - Accuracy (pprox 150 keV rms)
 - Simple wavefunctions
- Disadvantages
 - Limited in excitation energy and mass
 - Need effective SPE and TBME for good results
 - Different parameters for each model space; need to perform fit for each region of interest

Configuration Interaction (CI) Theory

- Limited to specific regions of the nuclear chart, mainly by mass
- General Procedure:
 - Select a doubly magic nucleus as the core and treat it as vacuum
 - Select a model space outside of the core
 - Determine single particle energies (SPE) from experimental single particle states
 - Determine two body matrix elements (TBME) from renormalization procedure
 - Can treat SPE and TBME as parameters and fit them to best reproduce data
 - TBME of the form $\langle (ab)J|V|(cd)J\rangle$ where V is the interaction and a,b,c,d refer to orbits in the model space
- Advantages
 - Accuracy (pprox 150 keV rms)
 - Simple wavefunctions
- Disadvantages
 - Limited in excitation energy and mass
 - Need effective SPE and TBME for good results
 - Different parameters for each model space; need to perform fit for each region of interest

Configuration Interaction (CI) Theory

- \bullet Limited to specific regions of the nuclear chart, mainly by mass
- General Procedure:
 - Select a doubly magic nucleus as the core and treat it as vacuum
 - Select a model space outside of the core
 - Determine single particle energies (SPE) from experimental single particle states
 - Determine two body matrix elements (TBME) from renormalization procedure
 - Can treat SPE and TBME as parameters and fit them to best reproduce data
 - TBME of the form $\langle (ab)J|V|(cd)J\rangle$ where V is the interaction and a,b,c,d refer to orbits in the model space
- Advantages
 - Accuracy (pprox 150 keV rms)
 - Simple wavefunctions
- Disadvantages
 - Limited in excitation energy and mass
 - Need effective SPE and TBME for good results
 - Different parameters for each model space; need to perform fit for each region of interest

Energy Density Functional (EDF) Methods

- Treats energy as a functional of one body density matrices, i.e. $E[\rho] = \int d\mathbf{r} \mathcal{E}[\rho(\mathbf{r})]$
- Standard formulations (e.g. Skyrme, Gogny) are empirical, but ultimately should connect to underlying *NN* and *NNN* interactions

Advantages

- Utilizes full single particle space
- Single parameterization produces results for all nuclei
- Relative ease of calculations for ground states

Disadvantages

- Lack of universal parameterization
- 600 keV 1.2 MeV rms deviation to ground state masses
- Missing dynamic correlations in current functionals
- Limited to certain states

Energy Density Functional (EDF) Methods

- Treats energy as a functional of one body density matrices, i.e. $E[\rho] = \int d\mathbf{r} \mathcal{E}[\rho(\mathbf{r})]$
- Standard formulations (e.g. Skyrme, Gogny) are empirical, but ultimately should connect to underlying *NN* and *NNN* interactions
- Advantages
 - Utilizes full single particle space
 - Single parameterization produces results for all nuclei
 - Relative ease of calculations for ground states
- Disadvantages
 - Lack of universal parameterization
 - 600 keV 1.2 MeV rms deviation to ground state masses
 - Missing dynamic correlations in current functionals
 - Limited to certain states

Energy Density Functional (EDF) Methods

- Treats energy as a functional of one body density matrices, i.e. $E[\rho] = \int d\mathbf{r} \mathcal{E}[\rho(\mathbf{r})]$
- Standard formulations (e.g. Skyrme, Gogny) are empirical, but ultimately should connect to underlying *NN* and *NNN* interactions
- Advantages
 - Utilizes full single particle space
 - Single parameterization produces results for all nuclei
 - Relative ease of calculations for ground states
- Disadvantages
 - Lack of universal parameterization
 - 600 keV 1.2 MeV rms deviation to ground state masses
 - Missing dynamic correlations in current functionals
 - Limited to certain states

iti				

SHF Basis

- Typical harmonic oscillator basis $\Psi_{nlm_l}(\vec{r}) = R_{nl}^{HO}(\mathbf{r}) Y_{lm_l}(\theta,\phi)$ is implemented easily
 - Realistic bases come in many forms, but the Skyrme Hartree-Fock basis is chosen
 - Since it does not have a clean analytic expression, the radial wavefunctions are implemented via an expansion of the HO basis

$$\psi_{nlj}^{SHF}(\vec{r}) = \sum_{n} a_n R_{nl}^{HO}(r) [Y_l(\theta, \phi) \otimes \chi_s]_j$$

- a_n^2 gives the percentage of a HO basis radial wavefunction in the SHF basis solution
- SHF can only be solved for bound orbits
- Approximations can be done for orbits unbound by a few MeV, but the HO basis is used for more unbound orbits
- Gram-Schmidt process is used to ensure orthonormality of basis
- Single Particle Energies
 - Divergences can occur in the renormalization procedure due to energy denominators for model space orbits with small energy differences
 - Orbits inside the model space are set to identical valence energies in order to prevent divergences

イロト イボト イヨト イヨト

In				

Island of Inversion

⁴²Si

Conclusions

SHF Basis

- Typical harmonic oscillator basis $\Psi_{nlm_l}(\vec{r}) = R_{nl}^{HO}(\mathbf{r}) Y_{lm_l}(\theta,\phi)$ is implemented easily
 - Realistic bases come in many forms, but the Skyrme Hartree-Fock basis is chosen
 - Since it does not have a clean analytic expression, the radial wavefunctions are implemented via an expansion of the HO basis

$$\psi_{nlj}^{SHF}(\vec{r}) = \sum_{n} a_n R_{nl}^{HO}(r) [Y_l(\theta, \phi) \otimes \chi_s]_j$$

- a_n^2 gives the percentage of a HO basis radial wavefunction in the SHF basis solution
- SHF can only be solved for bound orbits
- Approximations can be done for orbits unbound by a few MeV, but the HO basis is used for more unbound orbits
- Gram-Schmidt process is used to ensure orthonormality of basis
- Single Particle Energies
 - Divergences can occur in the renormalization procedure due to energy denominators for model space orbits with small energy differences
 - Orbits inside the model space are set to identical valence energies in order to prevent divergences

イロト イボト イヨト イヨト

iti				

Island of Inversion

⁴²Si

Conclusions

SHF Basis

- Typical harmonic oscillator basis $\Psi_{nlm_l}(\vec{r}) = R_{nl}^{HO}(\mathbf{r}) Y_{lm_l}(\theta,\phi)$ is implemented easily
 - Realistic bases come in many forms, but the Skyrme Hartree-Fock basis is chosen
 - Since it does not have a clean analytic expression, the radial wavefunctions are implemented via an expansion of the HO basis

$$\psi_{nlj}^{SHF}(\vec{r}) = \sum_{n} a_n R_{nl}^{HO}(r) [Y_l(\theta, \phi) \otimes \chi_s]_j$$

- a_n^2 gives the percentage of a HO basis radial wavefunction in the SHF basis solution
- SHF can only be solved for bound orbits
- Approximations can be done for orbits unbound by a few MeV, but the HO basis is used for more unbound orbits
- Gram-Schmidt process is used to ensure orthonormality of basis
- Single Particle Energies
 - Divergences can occur in the renormalization procedure due to energy denominators for model space orbits with small energy differences
 - Orbits inside the model space are set to identical valence energies in order to prevent divergences

イロト イポト イヨト イヨト

iti				

Island of Inversion

⁴²Si

Conclusions

SHF Basis

- Typical harmonic oscillator basis $\Psi_{nlm_l}(\vec{r}) = R_{nl}^{HO}(\mathbf{r}) Y_{lm_l}(\theta,\phi)$ is implemented easily
 - Realistic bases come in many forms, but the Skyrme Hartree-Fock basis is chosen
 - Since it does not have a clean analytic expression, the radial wavefunctions are implemented via an expansion of the HO basis

$$\psi_{nlj}^{SHF}(\vec{r}) = \sum_{n} a_n R_{nl}^{HO}(r) [Y_l(\theta, \phi) \otimes \chi_s]_j$$

- a_n^2 gives the percentage of a HO basis radial wavefunction in the SHF basis solution
- SHF can only be solved for bound orbits
- Approximations can be done for orbits unbound by a few MeV, but the HO basis is used for more unbound orbits
- Gram-Schmidt process is used to ensure orthonormality of basis
- Single Particle Energies
 - Divergences can occur in the renormalization procedure due to energy denominators for model space orbits with small energy differences
 - Orbits inside the model space are set to identical valence energies in order to prevent divergences

iti				

Island of Inversion

⁴²Si

医下子 医下口

Conclusions

SHF Basis

- Typical harmonic oscillator basis $\Psi_{nlm_l}(\vec{r}) = R_{nl}^{HO}(\mathbf{r}) Y_{lm_l}(\theta,\phi)$ is implemented easily
 - Realistic bases come in many forms, but the Skyrme Hartree-Fock basis is chosen
 - Since it does not have a clean analytic expression, the radial wavefunctions are implemented via an expansion of the HO basis

$$\psi_{nlj}^{SHF}(\vec{r}) = \sum_{n} a_n R_{nl}^{HO}(r) [Y_l(\theta, \phi) \otimes \chi_s]_j$$

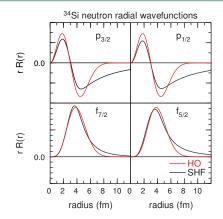
- a_n^2 gives the percentage of a HO basis radial wavefunction in the SHF basis solution
- SHF can only be solved for bound orbits
- Approximations can be done for orbits unbound by a few MeV, but the HO basis is used for more unbound orbits
- Gram-Schmidt process is used to ensure orthonormality of basis
- Single Particle Energies
 - Divergences can occur in the renormalization procedure due to energy denominators for model space orbits with small energy differences
 - Orbits inside the model space are set to identical valence energies in order to prevent divergences

Wavefunction Expansions

- In practice, the expansion over n has to be limited to some n_{max}
- Renormalization cutoff of 6 $\hbar\omega$ gives $n_{max} = 4$ for the $p_{3/2}$ and $p_{1/2}$ orbits and $n_{max} = 3$ for the $f_{7/2}$ and $f_{5/2}$ orbits
- 99% and 97% of the $f_{7/2}$ and $f_{5/2}$ orbits are accounted for in this expansion, but only 84% and 82% of the $p_{3/2}$ and $p_{1/2}$ strength

æ

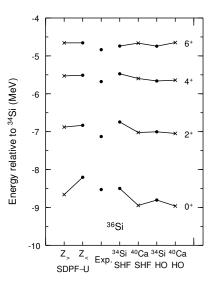
Wavefunction Expansions



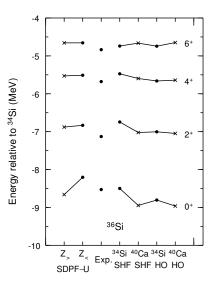
Calculations for ³⁶Si

- \bullet Simplest system outside of $^{34}{\rm Si}$ core that depends on TBME
- Neutron-rich isotope with well-known level scheme
- For consistency, SDPF-U SPE and proton-proton and proton-neutron TBME are used
- Calculations with NUSHELLX in *sdpf* model space

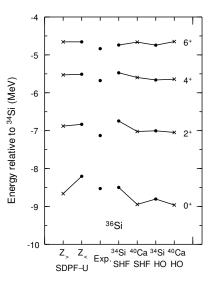
- No result reproduces current experimental data very well; level density too low for ⁴⁰Ca target
- ³⁶Si 0⁺ changes by over 300 keV depending on the target nucleus; good agreement with experiment after reduction in TBME
- 223 keV rms for ³⁴Si SHF to the four known states
- Inclusion of NNN forces, at least at effective two-body level, is necessary for accuracy at the hundred keV scale



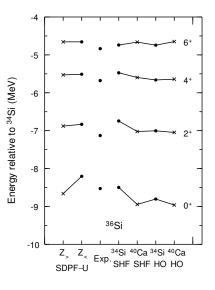
- No result reproduces current experimental data very well; level density too low for ⁴⁰Ca target
- ³⁶Si 0⁺ changes by over 300 keV depending on the target nucleus; good agreement with experiment after reduction in TBME
- 223 keV rms for ³⁴Si SHF to the four known states
- Inclusion of NNN forces, at least at effective two-body level, is necessary for accuracy at the hundred keV scale



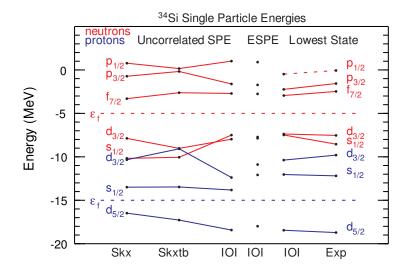
- No result reproduces current experimental data very well; level density too low for ⁴⁰Ca target
- ³⁶Si 0⁺ changes by over 300 keV depending on the target nucleus; good agreement with experiment after reduction in TBME
- 223 keV rms for ³⁴Si SHF to the four known states
- Inclusion of NNN forces, at least at effective two-body level, is necessary for accuracy at the hundred keV scale



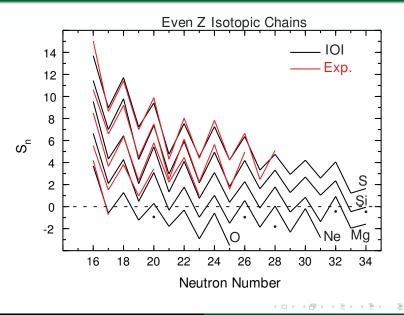
- No result reproduces current experimental data very well; level density too low for ⁴⁰Ca target
- ³⁶Si 0⁺ changes by over 300 keV depending on the target nucleus; good agreement with experiment after reduction in TBME
- 223 keV rms for ³⁴Si SHF to the four known states
- Inclusion of NNN forces, at least at effective two-body level, is necessary for accuracy at the hundred keV scale



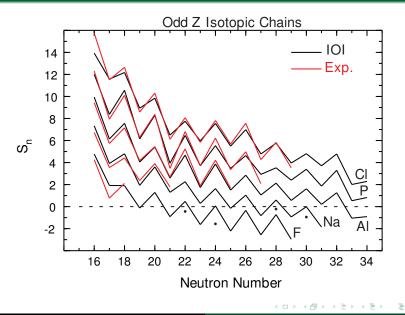
Systematic Trends



Systematic Trends



Systematic Trends



5 4 ×11/2- Reaction mechanisms can E (Mev) 3 also be calculated with the **IOI** interaction 2 × 7/2-* 7/2-• For example, states populated in ²⁷Ne through 1 a transfer reaction 3/24 3/2+ 0 41.47 MeV 01 MeV ²⁷Ne ²⁷Ne Experiment 101

6

Int				

1

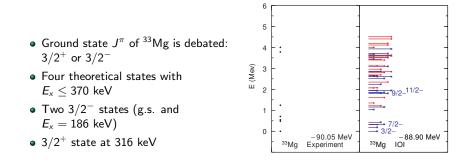
- $\bullet\,$ Comparison between experimental and theoretical spectroscopic factors for states in $^{27}\mathrm{Ne}\,$
- Experimental values from doctoral thesis of S.M. Brown (University of Surrey, 2010)

\int^{π}	E _{E×p} .	E _{IOI}	$C^2 S_{Exp.}$	$C^2 S_{IOI}$
3/2+	0.000	0.000	0.42(22)	0.58
3/2-	0.765	0.960	0.64(33)	0.63
1/2+	0.885	0.318	0.17(14)	0.41
7/2-	1.714	1.670	0.35(10)	0.46

⁴²Si

Conclusions

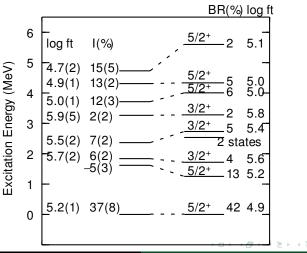
$^{33}{ m Mg}~eta^-$ decay



- V. Tripathi et al., Phys. Rev. Lett. 101, 142504 (2008)
- D.T. Yordanov et al., Phys. Rev. Lett. 99, 212501 (2007)

33 Mg β^- decay

- Transitions from theoretical $3/2^+$ agree with experiment
- $\bullet~\gamma$ decay (not pictured) used to match transitions



$^{33}{ m Mg}~eta^-$ decay

- $\bullet\,$ Decay from the $3/2^+$ state in ^{33}Mg matches experimental transitions
- $\bullet\,$ Half-life is 49 ms in comparison to 89(1) ms, but is ≈ 0.5 s for $3/2^-$ states
- However: measured magnetic moment is -0.75 μ_{N} , 3/2⁺ state is 0.88 μ_{N}
- $\bullet\,$ Excited 3/2 $^-$ state is in reasonable agreement with experiment at -0.82 μ_{N}
- $\bullet\,$ No state reproduces both the β decay and magnetic moment
- $\bullet\,$ Possible isomer \to for small energy differences, γ decay is suppressed
- Estimate for upper limit on half-life comes from theoretical β decay
- Additional measurements would be interesting, especially if the setup could resolve isomers