Plasma Formation and the Correlation with Current Loss in Post-Hole Convolutes

M. R. Gomez¹, R. M. Gilgenbach², M. E. Cuneo¹, R. D. McBride¹, G. A. Rochau¹,
B. Jones¹, D. J. Ampleford¹, D. B. Sinars¹, J. E. Bailey¹, W. A. Stygar¹,
M. E. Savage¹, M. Jones¹, A. D. Edens¹, M. R. Lopez¹, E. Stambulchik³,
Y. Maron³, D. V. Rose⁴, D. R. Welch⁴

Sandia National Labs
 University of Michigan - NERS Department
 Weizmann Institute

4) Voss Scientific

Outline

- Introduce Z-Pinches, the Z-Machine, and posthole convolutes
- Diagnostic setup
- Example spectrum and basic analysis
- Experimental measurements
 - Axial plasma location
 - Plasma density as a function of load
 - Propagation of plasma across A-K gap
 - Plasma density as a function of location
- Summary and conclusions

Magnetically-driven z-pinch implosions are a very rich field of study

- Wire array or gas puff x-ray sources
 - Intense x-ray sources
 - up to 2 MJ x-rays as 200 eV Planckian
 - up to 80 300 kJ in K-shell radiation (several keV)
 - Applications to laboratory astrophysics
- Magnetically-driven cylindrical liners
 - Inertial fusion
 - Dynamic materials
 - Growth of the Magneto-Rayleigh-Taylor instability

Magnetically driven implosions are efficient, powerful, x-ray sources from 0.1 to 10 keV

Power scales as current squared 20% current loss => 36% power reduction

The Z-Machine is the world's most powerful pulsed power driver, capable of delivering 25 MA with a 100 ns risetime ^[1]

Up to 20% of the peak current is lost between the stack and the load^[2]

High-power post-hole convolutes have complex geometries and high electric and magnetic fields which produce interesting plasma^[3]

The Z-Machine uses a 12 fold azimuthal symmetry double post-hole convolute^[4]

DPHC designed by Bill Stygar et al. It is the standard used for all 2200+ shots on Z.

Post-Hole convolute simulations show that current loss can be explained by plasma formation in the convolute^[5]

The experimental probe replaces one of the inner B-dots and views just downstream of the convolute.

Streaked Visible Spectroscopy system

- 2 Å spectral resolution
- 2 ns temporal resolution
- Fiber optically coupled

Convolute Plasma Emission Diagnostic

- replaces one inner MITL B-dot
- "on-post"
- Limiting aperture provides coarse spatial resolution

Stark broadening of the H-alpha absorption feature was used to determine the plasma density

LiF dopant was used in the convolute to constrain the axial location of the continuum emitter^[3]

The experimental data indicate that the observed continuum emitter is located between the two dopant locations^[5]

Simulations agree with experimental measurements to first order.

The plasma density as a function of time was investigated for two different load geometries.

Z2172 – High initial L, Low L-dot Z2082 – Low initial L, High L-dot

The energy transferred through the convolute affects the plasma forming in the region

This data indicates a closure velocity of 10-20 cm/µs.

Experiments were conducted to directly measure the velocity of the continuum emitter^[3]

Experimental setup:

- Identical loads
- Identical diagnostic settings
- Different field of view

Emission source travels from cathode to anode at up to 40 cm/µs

The plasma closure velocity was estimated based on plasma density measurements at several locations in the convolute

The plasma density inferred from the cathode view was greater than the gap view for all times.

The inferred gap closure velocity is ~ 20 cm/ μ s.

- Li absorption features observed
 - Observed continuum emitter located in convolute
 - Set loose bounds on axial position
- Inferred plasma densities up to 10¹⁸ cm⁻³
- Plasma density dependent on load impedance history
- Plasma crosses A-K gap from cathode to anode

Apparent closure velocity is 10s of cm/µs

Conclusions

- Post-hole convolutes are a critical component of high current pulsed power driver designs
- The losses in convolutes for certain loads have increased significantly as the power throughput of the convolute increased
- The plasma conditions/dynamics in the convolute are key to understanding the losses
- Experimental data are needed to confirm simulation results
- These experiments provide a basis to begin a study of the complex physics taking place in the convolute

References

- [1] K. R. LeChien, W. A. Stygar, M. E. Savage, P. E. Wakeland, V. Anaya, D. S. Artery, M. J. Baremore, D. E. Bliss, R. Chavez, G. D. Coombs, J. P. Corley, P. A. Jones, A. K. Kipp, B. A. Lewis, J. A. Lott, J. J. Lynch, G. R. McKee, S. D. Ploor, K. R. Prestwich, S. A. Roznowski, D. C. Spencer, S. D. White, and J. R. Woodworth, "6.1-MV, 0.79-MA Laser-Triggered Gas Switch for Multimodule, Multiterawatt Pulsed-Power Accelerators," *Physical Review Special Topics Accelerators and Beams, vol. 13, 2010, pp. 1-11.*
- [2] D. V. Rose, D. R. Welch, C. L. Miller, R. E. Clark, E. A. Madrid, C. B. Mostrom, T. C. Wagoner, J. K. Moore, W. A. Stygar, J. E. Bailey, T. J. Nash, G. A. Rochau, and D. B.Sinars, "10⁷-A Load-Current B-Dot Monitor: Simulations, Design, and Performance," *Physical Review Special Topics -Accelerators and Beams, vol. 13, 2010, pp. 1-9.*
- [3] M.R. Gomez, Plasma Evolution and Current Loss in Post-Hole Convolutes, Ph.D. Dissertation, Defended Nov. 18, 2010; Final Submission Dec. 16, 2010.
- [4] D. V. Rose, D. R. Welch, T. P. Hughes, R. E. Clark, and W. A. Stygar, "Plasma Evolution and Dynamics in High-Power Vacuum-Transmission-Line Post-Hole Convolutes," *Physical Review Special Topics – Accelerators and Beams, Vol. 11, 2008, pp. 1-10.*
- [5] D. V. Rose, D. R. Welch, R. E. Clark, E. A. Madrid, C. L. Miller, C. Mostrom, W. A. Stygar, M. E. Cuneo, C. A. Jennings, B. Jones, D. J. Ampleford, and K. W. Struve, "ZR-Convolute Analysis and Modeling: Plasma Evolution and Dynamics Leading to Current Losses," Pulsed Power Conference Proceedings, vol. 17, 2009, pp.1153-1158.

