Production of interesting isotopes with plutonium-242 targets

Paul A. Ellison

University of California, Berkeley, Department of Chemistry

2011 DOE NNSA SSGF Annual Conference, July 21st, 2011

Acknowledgements

- UC Berkeley / LBNL Heavy Element Nuclear and Radiochemistry Group
 - J.P. McLaughlin, C. Fineman-Sotomayor, J. Champion, Z. Dvorakova, L. Stavsetra,
 K.E. Gregorich, H. Nitsche
- LBNL 88-Inch Cyclotron
 - Scientists / Postdocs / Ion source and cyclotron staff
- Funding
 - US DOE Offices of High Energy and Nuclear Physics and Basic Energy Sciences
 - US DOE NNSA Stewardship Science Academic Alliances Grant
 - US DOE NNSA Stewardship Science Graduate Fellowship
 - Krell Institute for outstanding administration

1																	2
Н		_															пе
3	4											5	6	7	8	9	10
Li	Be											В	С	Ν	0	F	Ne
11	12													15	16	17	18
Na	Mg											AI	Si	Р	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Т	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112	(113)	114	(115)	(116)	(117)	(118)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn						
													74				
				58	59	60	61	62	63	64	65	66	67	68	69	70	/1
Lanthanides				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
Actinides				Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

- Low energy nuclear reaction studies
- ²⁴²Pu target production
- Part I: Production of ²⁴⁰Am
 - Motivation / Background
 - Results
- Part II: Production of ²⁸⁵114
 - Motivation / Background
 - Results

Number of target atoms being bombarded —

Intensity of bombarding ions

Net production rate = $N \cdot I \cdot \sigma$

Cross section -

- dependent on projectile, energy of projectile, and target
- essentially the probability that product will be formed
- measured in units of area (1 barn = 10⁻²⁴ cm²)

²⁴²Pu target production

- From ORNL to LBNL in 1987 as ²⁴²PuO₂ powder
 - ²³⁸Pu: 0.004%
 - ²³⁹Pu: 0.005%
 - ²⁴⁰Pu: 0.022%
 - ²⁴¹Pu: 0.035%
 - ²⁴²Pu: 99.932%
 - ²⁴⁴Pu: 0.002%
- Dissolved ~150 mg and purified using anion exchange chromatography
 - Removed significant ²⁴¹Am contamination

²⁴²Pu target production

- Low energy nuclear reaction studies
- ²⁴²Pu target production
- Part I: Production of ²⁴⁰Am
 Motivation / Background
 - Results
- Part II: Production of ²⁸⁵114
 - Motivation / Background
 - Results

Chart of nuclides around americium-240

Neutron number

- Want to measure ²⁴⁰Am(*n*,*f*) cross section
 - Post detonation nuclear forensics
 - Science-based stockpile stewardship
 - Predictions of nuclear waste isotopics of minor actinides

 Possible to measure at LANL LANSCE lead slowing down spectrometer

— Need 10 – 100 nanograms of ²⁴⁰Am

- Cannot be produced in nuclear fission reactor
- Previously studied nuclear reactions have only low cross section (2-3 millibarn)
- ²⁴²Pu(p,3n)²⁴⁰Am has high predicted cross section of 100 – 300 millibarn, but never experimentally measured
 - Mashnik, S.G., et al., LANL Report LA-UR-05-7321, Los Alamos (2005).
 - Mashnik, S.G., et al., Research Note X-3-RN(U)-07-03, LANL Report LA-UR-06-8652, Los Alamos (2006).

²⁴²Pu(*p*,3*n*)²⁴⁰Am targetry

- Irradiations of ²⁴²Pu targets on Ti backings were performed during 32 hours of beam time at LBNL's 88-Inch Cyclotron in five separate experiments
 - Involved data analysis techniques for gamma spectra of irradiated foils

²⁴²Pu(*p*,3*n*)²⁴⁰Am

 $natTi(p,xn)^{48}V$ (used as proton monitor reaction)

^{nat}Ti(*p*,*αxn*)⁴⁶Sc ⁵⁰Ti(*p*,*p'p"n*)⁴⁸Sc

Four hour gamma spectrum taken of ²⁴²Pu deposited on Ti foil 34 hours after irradiation with 25 MeV protons.

Cross sections measured to be ~40 millibarn
 — Predicted to be 100 - 300 millibarn

 While less than predicted, remains the most promising heavy ion reaction for producing ²⁴⁰Am for a LSDS irradiation

- Low energy nuclear reaction studies
- ²⁴²Pu target production
- Part I: Production of ²⁴⁰Am
 Motivation / Background
 - Results
- Part II: Production of ²⁸⁵114
 - Motivation / Background
 - Results

	Δ
_	
BERKELEY LAB	V

1																	2
Н																	He
3	4											5	6	7	8	9	10
Li	Be					В	С	Ν	0	F	Ne						
11	12													15	16	17	18
Na	Mg												Si	Р	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Т	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	ΤI	Pb	Bi	Ро	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112	(113)	114	(115)	(116)	(117)	(118)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn						
													74				
La sulla su tala s				58	59	60	61	62	63	64	65	66	67	68	69	70	/1
Lantnahides				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
Actinides				Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

S. Hofmann et al., Eur. Phys. J. A 32, 251 (2007).

Plutonium target apparatus

- 270 440 μg / cm^2 of ^{242}Pu on 2.4- μm Ti foils
- 9.5 cm diameter wheel

Focal-plane detector box

Vertical position determined by resistive charge division

3n, 4n, and 5n cross sections

V.I. Zagrebaev, Nucl. Phys. **A734**, 164 (2004). V.I. Zagrebaev (private communication).

Upper end of the nuclide chart

- Low energy nuclear reaction studies
- ²⁴²Pu target production
- Part I: Production of ²⁴⁰Am

 Measured cross section for ²⁴²Pu(*p*, 3*n*)²⁴⁰Am reaction

• Part II: Production of ²⁸⁵114

— Discovery of six new superheavy element isotopes

Thank you for your attention

BERKELEY, CALIFORNIA

Even-Z experimental / theoretical Q_{alpha} values

- Irradiated plutonium target will consist of
 - ~1 g ²⁴²Pu + ~ 50-100 ng ²⁴⁰Am
 - Products of ²⁴²Pu(p,f) reaction: Z=38 (Sr) to Z=62 (Sm)
 - ⁹⁷Zr-⁹⁷Nb, ⁹⁹Mo-^{99m}Tc, ¹²⁶Sb, ^{132,133}I, ¹⁴⁰La
 - T. Ohtsuki *et al.*, *Phys. Rev. C* **40**, 2144 (1989).
- challenges of separation
 - High Pu/Am mass ratio in the target (separation factor $\sim 10^8$)
 - Similar chemistry of Am and some FP (lanthanides)
 - High radioactivity (~2 R/hr=20 mSv/hr at 30 cm 1 day after irr.)
 - Time restriction (T_{1/2} of 240 Am is 50.8 h)

Anion Exchange Chromatography

Pu complexed to column, Am being eluted

TEVA extractant:

Quaternary ammonium salt

(liquid anion exchanger)

$$R \stackrel{CH_{3}}{=} R \stackrel{'}{=} R$$

$$R = C_{8}H_{17} \text{ and } C_{10}H_{21}$$

Surface of Porous Bead

 $Pu^{4+} + 4NO^{3-} + 2 E \cdot NO_3 \iff E_2^{+} \cdot Pu(NO_3)_6^{2-}$

(E=Extractant)

TEVA extractant:

Quaternary ammonium salt (liquid anion exchanger)

 CH_{3} $R \sim N - R$ + 1 - R R R $R = C_{8}H_{17}$ and $C_{10}H_{21}$ Surface of Porous Bead

(E=Extractant)

Am/Pu/FP separation summary

Difficulties due to formation of polynuclear hydrolysis products

- Background rates (for whole array):
 - EVR-like rate (5 < E (MeV) < 18): 0.38 Hz
 - α -like rate (8 < E (MeV) < 12): 0.011 Hz
 - SF-like (E (MeV) > 80): 9 events (only 3 with E(MeV) > 101)
- Defined "²⁸⁵114-like" decay chain as:
 - EVR-like event, 3 α -like events, and an SF-like event
 - Correlated within 20 hours
 - One α -lifetime less than 3 seconds
 - 9.2 x 10⁻⁴ such expected correlations
- ²⁸⁶114-like decay chain as:
 - Within decay 10 half-lives of observed properties (~1.5 seconds)
 - 1.7 x 10⁻⁹ such expected correlations