First Principles Simulations of Hydrogen and Helium at High Pressure

Miguel A. Morales

Rice University June 21, 2010

Outline

- Introduction and Motivation
- Simulation Methods
- CEIMC Simulations
 - Metallic hydrogen EOS
 - DFT benchmark
- Hydrogen-Helium Mixtures
 - Equation of state
 - Phase separation
- Molecular Dissociation
 - 1st order liquid-liquid phase transition
 - H₂ melting line

- Collaborators:
 - UIUC
 - David M. Ceperley
 - Fei Lin
 - LLNL
 - Eric Schwegler
 - Sebastien Hamel
 - Kyle Caspersen
 - U. L'Aquila, Italy
 - Carlo Pierleoni
 - Elisa Liberatore

First-Principles Simulations: direct solution of electronic problem

 Fix the position of the nuclei, solve the Schrödinger eqn. for the electrons (BO approximation):

$$\begin{bmatrix} -\frac{\hbar^2}{2m} \vec{\nabla}^2 + V(\vec{r}, \{\vec{R}\}) - E_{BO} \end{bmatrix} \Psi(\vec{r}) = 0$$
$$\hat{V}(\vec{r}, \{\vec{R}\}) = \hat{V}_{e-e} + \hat{V}_{e-n} + \hat{V}_{n-n}$$

- Electronic Structure Methods:
 - Tight-binding, non-SCF DFT
 - Density Functional Theory (DFT)
 - Semi-local functionals
 - Hybrids

CCU

- Quantum Monte Carlo (QMC)
- Quantum Chemistry

 Nuclei represent an external potential in the electronic problem

Motivation

- Predicted age: ~2-2.7 Gyr
- Additional energy source in planet's interior is needed
 - Helium segregation
 - Gravitational differentiation

Giant Planets

- Primary components
- P(ρ, T, x_i) closes set of hydrostatic equations
- Interior models depend very strongly on EOS and phase diagram

Figure taken from: Fortney J. J., Science 305, 1414 (2004).

Hydrogen Phase Diagram

- Interesting physics:
 - Molecular dissociation
 - Metal-Insulator transition
 - Melting

	FIUIA H
Solid H ₂	Solid H

CEIMC simulations

Free Energy Calculations

- Free energies are hard to calculate!!!
 - Not ensemble averages, they are related to the available phase space
- Direct evaluation using first-principles is too expensive
 - 1. Build simple effective potential that resembles DFT / QMC.
 - 2. Do complicated calculations on the simple system
 - 3. Calculate free energy difference using Coupling Constant Integration
 - 4. Expand free energy using EOS from regular simulation

$$\frac{F(V,T_2,x)}{T_2} - \frac{F(V,T_1,x)}{T_1} = -\int_{T_1}^{T_2} \left(\frac{E(V,T,x)}{T}\right) \frac{dT}{T} \qquad V(\lambda) = \lambda V_1 + (1-\lambda)V_0$$

$$F(V_2,T,x) - F(V_1,T,x) = -\int_{V_1}^{V_2} P(V,T,x) dV \qquad F_1(T,V,N) - F_0(T,V,N) = \int_0^1 d\lambda \left(\frac{dF(\lambda)}{d\lambda}\right)$$

$$= \int_0^1 d\lambda \langle (V_1 - V_0) \rangle_{T,V,N,\lambda}$$

Very efficient method for simple systems

H-He mixtures

Previous work

Fully ionized models

- Stevenson 1975, Hubbard-DeWitt 1985, Pollock-Alder 1976, etc.
 - Protons + Alpha particles in a uniform compensating negative background

 - Predict T_m(P) with negative slope

First Principles

- Ideal mixing approximation
 - Klepeis, et al. 1990: $T_m \sim 15,000 \text{ K} \rightarrow \text{major differentiation}$
 - Mixing Enthalpy from calculations on alloys of H-HE
 - **Pfaffenzeller**, *et al.* 1994: $T_m \sim 4000 6000 \text{ K} \rightarrow$ no phase separation
 - Improved over Klepeis, et al. by allowing structural relaxation
 - Redmer, et al. 2009: Τ_m ~ 8000 9000 κ
 - Composition dependence of enthalpy by BOMD.

Molecular-like Correlations

- Weak attraction even at very high pressures
- Induces molecular-like correlations
 - Pseudo-molecular state has smaller entropy compared to atomic state.

Molecular-like Correlations

- Weak attraction even at very high pressures
- Induces molecular-like correlations
 - Pseudo-molecular state has smaller entropy compared to atomic state.

Phase Diagram

Morales M., et al.: PNAS 106:1324-1329 (2009)

Liquid-liquid Phase Transition

- Pressure plateau at low temperatures
 - Clear signature of 1st order
 - Clear signature of 1st order (b) transition Both CEIMC and BOMD simulations show signature Both CEIMC and BOMD
- Similar behavior observed at 2000 K, 1500 K and all the way down to 600 K.

LLT - Electronic Conductivity

- Clear signs of sharp metallization across the transition
- Extrapolate discontinuity to find critical point

H₂ Melting Line

- Independent free energy calculation for liquid and solid phases
 - 10 GPa < P < 200 GPa
 - 500 K < T < 1500 K
- Solid Molecular phase
 - Assume Phase-I, hcp lattice without orientational order
 - NPT simulation to determine equilibrium lattice
 - Coupling constant integration using Einstein crystal method.

Morales M. A., et al., accepted for publication in PNAS.

- First principles EOS for metallic hydrogen from QMC
 - Good agreement with DFT-based simulations.
- Clear signature of helium immiscibility at high pressure.
 - Strong evidence for helium condensation in Saturn.
- Clear evidence for 1st order LLT in hydrogen
 - Critical point at T~2000 K
 - Intersects melting line below T~800 K, above 200 GPa.

Acknowledgements

- We acknowledge support from:
 - Department of Energy Stewardship Science Graduate Fellowship (SSGF) program
 - DOE
 - LLNL
- Computer Resources:
 - NCCS INCITE
 - LC (LLNL)
 - NCSA
 - CINECA (Italy)

STEWARDSHIP SCIENCE GRADUATE FELLOWSHIP