

Structure in Radiative Shock Experiments

Forrest Doss

SSGF Annual Meeting 6/21/2010

This work is funded by the DOE NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas by grant DE-FG52-09NA29548, by the National Laser User Facility Program in NNSA-DS by grant DE-FG52-09NA29034, by the Predictive Sciences Academic Alliances Program in NNSA-ASC by grant DE-FC52-08NA28616, and by the DOE Stewardship Science Graduate Fellowship program.

We call shock waves radiative when...

• Radiative energy flux would exceed incoming material energy flux

where post-shock temperature is proportional to u_s^2 in simple shock model.

• The ratio of these energy fluxes is proportional to u_s^5/ρ_0 , so for high enough u_s , radiation dominates.

Conservation of energy forces the shock wave to develop complex structure

Shocks in supernovae pass through the regime of our experiments as they emerge

1987A simulation

Xe experiment simulation

- Core collapse SN shock develops a thin dense shell.
 - This occurs once radiation ahead of the shock can escape.
 - This should lead to increase in luminosity.
 - Breakup of dense shell is of interest and will impact later SNR structure.

Experiments are conducted in directly driven xenon-filled shock tubes on the Omega laser

Radiography measures shock features

- Shock is driven by 20 μm Be disc, t = 13 ns, shock traveling at ~110 km/sec.
- Shock has traveled 2 mm, apparently compressed material to < 150 μm.
- Gold Grid serves as a spatial fiducial. Data from pre-shot metrology is used to diagnose lengths in target image.
 - No transmission through the dense layer.

October 2008, we shot a campaign of nominally identical targets.

Achieved $\sim 5\%$ build variation, lower laser and gas variation, additional alignment variation on some shots, one known out-of-spec target.

arget Coord. Y 0

-200

-400

1400 1600 1800 2000 2200 Target Coord. X (µm)

200 Target (

> 1400 1600 1800 2000

Target Coord. X (µm)

0.25

We infer mean shock compression

- For a given true mean compression $\theta \chi$, we generate a histogram of predicted observations.
- Observations are skewed to lower values.
- Fitting observed quantities to Tilt() distributions, we generate a distribution for $\theta \chi$.
- Mode at 21.5, 95% interval asymmetrically distributed between [20.7,23.7].
- Probability 99.99% θχ > 20.2

Wall shocks control the lateral boundaries

High resolution HYDRA* simulation The shock tube is typically much denser and stronger than the interior material. Normally, the shock tube's evolution has small effects on material ahead of the shock.

* M. M. Marinak et al., *Phys.** *Plasmas* 8, 2275 (2001)

- This assumption breaks down in HED systems.
- Radiation from the shock induces plastic ablation, forming a radial blast wave in the tube.

Effects of the wall shock are clearly seen in radiating shock experiments

1400 1600 1800 2000 2200 2400 Target Coord. X (μm)

Omega Shot 52665

Wall shock induced features include:

• Finite displacement of shock edges from tube walls

Angle of primary shock
deflection at kink

• Angle of wall shock off of wall

Curvature and thicknesses of the trails

• Dense Xenon collected behind the primary shock.

Wall shock features contain information.

The entrained flow behind the shock is also a consequence of the wall shocks

- Xenon which passes through multiple oblique shocks will exit the system faster than flow through a single normal shock.
- Mass swept up by wall shock around edge of the tube becomes the dense xenon in the entrained flow.

Results of analysis show structure internal to shocked layer

Analysis yields a dispersion relation

$$2n^4 + n^2 \left(k^2 c_s^2 - \frac{\dot{V}_s^2}{c_s^2}S\right) - k^2 \dot{V}_s^2 S = 0$$

where $S = 1 + \frac{jc_s^2}{\dot{V}_s \tanh jH}$

- with *n* the growth for a given wavenumber *k*, and $j^2 = k^2 + c_s^2$.
- For k small, the tanh *jH / j* term becomes simply *H*, and solutions are analytically expressible. Otherwise, can solve this equation numerically.

Model predicts regions of instability

- The dispersion relation can be plotted for our shock parameters.
- Find a region of instability for wavelengths between about 190 to 1200 microns.
- Peak growth at about 350 microns, with growth rate
 1.2 · 10⁸ sec⁻¹.
- A number of these should be able to fit within our 575 micron tube.

Do we have evidence of instability growth?

• Previous images may show evolution of high/low density regions

Shock instability may occur in astrophysics

- This instability could be responsible for structure evolution in supernova remnants.
- Shown: SN1993J, three to five years after nova.

 c_s^2

 $\cdot n$

kH

 Π_2

 Π_3

tanh

The dispersion relation may be nondimensionally scaled $n^4 + n^2 k^2 c_s^2 - k^2 \dot{V}_s^2 \left(1 + \frac{k c_s^2}{\dot{V}_s \tanh kH}\right) =$

- The dispersion relation (here neglecting acoustic terms for simplicity) may be rewritten as a function of three dimensionless parameters.
- If two input parameters are matched in two systems, the third parameter will necessarily be equal.

$\Pi_3^4 + \Pi_1^2 \Pi_2^2 \Pi_3^2 - \Pi_1^2 \Pi_2^2 \left(1 \right)$

Astrophysical and laboratory parameters are not too far off

