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Outline
 Introduction to Magnetic Fusion Energy (MFE)

 Overview of the Lithium Tokamak eXperiment (LTX)

 Magnetic diagnostics for LTX

 LTX LRDFIT – 2-D code characterization

 LTX Cbshl – 3-D code development

 Summary
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Fusion Energy

Goal: Generate power, like stars, through fusion reactions

Example Reaction: D + T  n +  + 17.6 MeV

Benefits:

* Widely available input fuel source – sea water

* No risk of  runaway chain reaction leading to nuclear accident

* Clean energy production – no greenhouse gas emission

* No high-level radioactive, nuclear waste



Magnetic Fusion Energy

* Fusion requires a balance of  density, temperature, and confinement time

* Required temperature too high for physical containment  magnetic bottle

* Form a plasma inside a physical vacuum vessel

* Constrain plasma particles to closed magnetic field lines

* Supply external heating in the form of  neutral beam injection or   

radiofrequency heating

* Highly energetic particles collide leading to fusion reactions and energy 

production

* Several potential magnetic bottle ‘shapes’:

Advanced Tokamak Spherical Torus Compact Stellarator



Lithium acts as a getter → reducing recycling
 Experimental confirmation of plasma performance enhancement with 

lithium usage:

 TFTR lithium wall-conditioning – solid Li

 T-11M, FTU lithium rail limiter – liquid Li

 CDX-U tray limiter filled with 2000 cm2 liquid lithium – liquid Li PFC

CDX-U tray limiter

Largest improvement in energy 
confinement time for an Ohmic 

tokamak

Red: Li, Blue: no Li

CDX-U
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 Extend previous lithium experimental results to operation with 85% liquid    
lithium coverage of last-closed-flux-surface

LTX parameters:

Major radius . . . . . . . . 0.4 m

Minor radius . . . . . . . . 0.26 m

Toroidal field . . . . . . . 2 kG

Plasma current . . . . . . 15 kA  150 kA

Discharge duration . . . 5 ms  25 ms

Lithium Tokamak eXperiment

1.8 m
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LTX in-vessel, heated, conformal Cu shell
 85% LCFS covered by liquid lithium when shell is lithium-coated

 Conformal with plasma last-closed-flux surface

 Two 22.5° toroidal breaks, and inboard and outboard poloidal breaks

 Can be heated up to 500 °C

 Mechanically and electrically isolated from the vacuum vessel

1.8 m
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Basic theory of magnetic diagnostics
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Poloidal field coils

LTX has extensive set of magnetic diagnostics

 11 centerstack flux loops

 16 shell flux loops

 4 saddle loops

 30 in-shell B-dot coils

 12 ex-shell B-dot coils

 18 2-axis gap B-dot coils

 26 B-dot coils in rectangular array

 2 plasma current-measuring coils

 1 vessel current-measuring coil

 Plasma stored energy 
measurement
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Magnetic diagnostics design requirements

 Withstand high temperatures (500 °C) and 
contact with lithium

 Maintain electrical isolation between 
shell quadrants and between shell 
and vacuum vessel

 Minimize distance between diagnostic 
and plasma

 Provide data on toroidal asymmetries 

 Provide full coverage of poloidal 
cross-section

 Yield data for highly-constrained 
equilibrium flux surface 
reconstructions
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 2-turn, center-tap grounded with separately grounded stainless steel housing 
for noise immunity

 SS housing covered with Steatite ‘fishspine’ and MgO to provide electrical 
isolation between diagnostic and shell and between shell quadrants

 Mounted directly to non-plasma facing side 
of shell to minimize distance to plasma and 
provide full poloidal coverage

 Signals valuable for code calibration, vertical 
null formation, constrained equilibrium 
reconstructions

Shell flux loops – 8 on upper shells, 8 on lower
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Saddle loops – 4 total; outboard of vertical midplane
 Analogous materials and fabrication technique as shell flux loops

 Span toroidal gap, measure flux through gap from circulating shell currents

 Signals essential for determining magnitude and evolution of shell currents
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In- and ex-shell B-dot sensors
 30 in-shell, 12 ex-shell; outboard coverage including poloidal gap at 3 

toroidal locations

 Sensors mounted in SS housing to both plasma-facing side of shell and non-
plasma-facing side of shell

 Signals provide measure of field extremely close to plasma; evidence of 
toroidal asymmetries

 Comparison between in and ex-shell sensors yields 
direct measurement of shell eddy currents
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2-axis gap Mirnov coils – 9 probes upper, 9 lower
 Total of 36 probes mounted in toroidal gap; provide full poloidal coverage

 Mounting tabs plasma-sprayed with W; sensors covered by stainless steel 
protective caps, leads covered with fiberglass and stainless steel overbraid

 Signals provide dense measurement of poloidal and radial fields with 
minimal shell influence; yield measure of vertical 
field component and bulge of field into toroidal gap
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LTX LR circuit model with Data FITting capabilities
 Axisymmetric (2-D), non-filamentary code developed for NSTX (J. Menard) 

– now tailored for LTX

 Solves circuit equations based on models of vacuum vessel, shell and 
plasma composed of individual conducting elements with assigned 
inductance and resistance values

 To reduce 3-D effects to a 2-D representation – inboard versus outboard 
shell elements’ resistivity values adjusted to account for different current 
path lengths

‘Full Shell’ model

‘No Shell’ model
R R

Z=0Z=0
Shell

Vacuum vessel
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LTX LRDFIT

‘Full Shell’ model

‘No Shell’ model

‘Partial Shell’ model
‘Partial Shell’ model
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LTX LRDFIT validation, comparison with fast camera

Discharge initiation

Visible fast camera frame
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LTX LRDFIT field comparison at peak plasma current

345.298 ms

Visible fast camera frame

Discharge fully developed
Peak IP
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LTX LRDFIT field comparison at termination

Discharge termination IP 
→ 0

347.711 ms

Visible fast camera frame
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Inherently 2-D, LTX LRDFIT can simulate 3-D circulating shell currents
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 Shell currents during plasma discharge ~20 kA

 Provide field in opposite direction to main vertical field coils, elongates 
plasma, drives vertically unstable

 Up-down asymmetry observed on magnetic 
diagnostics signals

 Plasma reconstructions show solution high or 
low in plasma volume
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Next step: 3-D simulation of LTX double-walled conducting structure

 Response function technique (L. Zakharov) coupled with three-dimensional 
electromagnetic model and circuit equations

 Response functions – mathematical relationship between a finite-size 
sensor and an individual poloidal field coil through driving voltage 
applied to the field coil:
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 Calibrate location of field coils and magnetic diagnostics by minimizing 
difference between theoretical saturation value and calculated asymptote 
from measured data response function

 Matrix of response functions allows:

 Non-plasma contribution to sensor signals to be removed

 ‘Reverse’ solving for discharge design  

Response Function Technique
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 Triangular mesh calculated for shell quadrants and vacuum vessel 
(>18,000 elements per shell quadrant, >8,000 elements for vacuum 
vessel)

 Derived (L. Zakharov):  analytical representation 
of field due to the surface current on each triangle, 
no surface singularities AND linked circuit equations –

Coupled with response functions, simulate eddy currents in shell and vessel
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Conclusions
 Extensive need to diagnose eddy currents and 3-D effects, particularly as 

more experiments investigate alternative first wall and blanket concepts

 LTX magnetic diagnostics system permits quantification of eddy currents, 
provides path forward for mitigating operational issues introduced

 LTX LRDFIT has been tailored to include 3-D effects, essential for start-up 
design and discharge development

 Further work:  continued development of a full, 3-D electromagnetic code

 Double-walled conducting structure (shell and vacuum vessel) of LTX 
provides opportunity to explore liquid lithium PFCs and to develop 
magnetic diagnostics, 2-D, and 3-D codes of general applicability for: 
quantifying eddy currents and their effects on plasma behavior, and 
optimizing these effects
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Magnetic diagnostics crucial for discharge development
 Basic Ohmically-driven tokamak start-up theory:

 Provide Ohmic flux to drive plasma

 Form vertical/poloidal field null near 
peak in Ohmic flux swing

 Provide vertical field for confinement 
after initial electron avalanche and 
breakdown

 Develop vertical fields for discharge 
control and shaping

 Challenges in double-walled tokamak:

 Minimizing required Ohmic flux

 Quantifying eddy currents in conductive structures close to plasma
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Shell flux loop subtraction



Quantifying eddy currents in the shell
 Calculation of decay times

 Collect library of calibration shots:  individual poloidal field coil pulses 
and pulses with operational pairs of coils, long-pulse (>300 ms) 
wherever possible

 Expand library with poloidal field coil-only pulses during shell heating 
tests
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 Mathematically linearly superimpose poloidal fields to minimize vertical 
field near loop voltage peak

 Compare with LTX LRDFIT field contour simulations
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 Use reconstructions to study energy confinement time

 Examine changes in current profile with reduced recycling

 Examine scaling of confinement time with various plasma 
parameters such as current, field, density, and temperature

 Compare results with ASTRA-ESC simulations

 Simulations utilize the Reference Transport Model (RTM), which 
reflects elimination of anomalous electron transport in LiWall 
regime, and fits well with CDX-U data

 RTM is sensitive to diffusion coefficients, not thermoconduction 
since only minimized temperature gradient is present – electron and 
ion transport become linked: e = i = Di,e = i

neoclassical

 Compare simulations with LTX data and reconstructions

 If similar correspondence is observed, may permit first principles 
transport model of LTX

Future Work – Interpretation of Reconstructions






