

Materials under extreme conditions

Kathleen Alexander Los Alamos National Laboratory

Stewardship Science Graduate Fellowship Annual Conference

June 22, 2010 Washington, DC

- Crosses many disciplines
 - Physics, engineering, chemistry, biology, statistics
- Spans from atomistic to continuum
 - Each requires theory, experiments and simulation at state-of-the art
- Spans basic \rightarrow applied
 - Pure science: basic science studies
 - Intermediate: application (mission)-driven basic science
 - Applications : what is the right material to use to build ____?
- Spans traditional \rightarrow hot topics
 - Foundry fabrication to nanoscience
- Required by many (all)
 - Too often the lament of materials scientists is: "Why didn't you come to talk to us before you had a problem? We could have helped prevent it."

Core area in many parts of Department of Energy: Office of Science, NNSA, Energy Efficiency, Nuclear Energy...

Materials are used in many extreme environments

Example: Radiation-hardened electronics Designing materials for high-performance use in extreme environments

- Small process changes can significantly enhance the survivability of electronics to radiation
- As materials models and process models increase in sophistication, they can be used to optimize material properties
- Key applications include:
 - Insensitive explosives
 - Radiation tolerant materials
 - Hydriding-resistant materials
 - Reduced weight materials

- Developing a predictive capability for materials response in extreme conditions
 - Need *materials data at a variety of length scales* under *extreme conditions with relevant drive conditions*
 - Materials Data
 - Discovery data what is the right phenomenology/physics?
 - Fundamental data e.g. elastic modulus, constitutive properties ...
 - Validation data did we reproduce nature?
 - Extreme Conditions with relevant drive conditions
 - New tools and facilities push the state-of-the-art (and materials)
 - Need to understand the role of materials processing
- Developing pipeline for the next generation

Four key areas: Materials, Nuclear, Hydrodynamics and High Energy Density Physics Understanding states of matter over a wide range of temperatures and pressures is key element of NNSA's mission National Nuclear Security Administration

The prediction of the properties and response of materials under *high-pressure* conditions is a focus of NNSA research programs

Integration of experimental, theoretical, and computational efforts forms the core approach to executing NNSA's missions

Performing experiments and simulations at the same scale

Operative mechanism for deformation in materials span nine orders-of-magnitude

•	Dislocation nucleation	10^{-12} (s)
•	Phase Transformation	10-12
•	Spallation	10 ⁻⁷ to 10 ⁻⁹
•	Twin formation	10-8
•	Transformation propagation	10-7
•	Strain Hardening 3D	10-7
•	Dynamic recovery	10-7
•	Damage Evolution (voids / cracks)	10-6
•	Dynamic recrystallization	10-6
•	Adiabatic shear localization	10-5
•	Fracture	10-3

Process-Aware: Linking processing, structure, properties to performance (and specifications)

Microstructure image courtesy of E. Lauritsen

"Process-aware" materials sensitivities influence many relevant physics models

- EOS Influence of material chemistry
- Strength material pedigree, manufacture and processing, shock hardening
- Instability Growth
- Damage Evolution microstructure
- Fracture & Fragmentation
- •

Understanding interactions of defects with microstructure is important

Recovered target

New soft capture system developed to study damage evolution under shock conditions

Solid-solid phase transformations involve multiple length and time scales: Electron and x-ray probes provide key diagnostic tools

DXRI: Dynamical x-ray imaging / DTEM: Dynamical transmission electron microscopy

NNSA requires a suite of complementary materials science capabilities

- Metallography, thermodynamic and physical property characterization
 - Including hazardous materials
 - How do materials' properties change as a function of process, time, environment?
- Mechanical properties
 - Elastic moduli, strength, ...
 - Static and dynamic response (DAC, Gas guns, Hopkinson bar, ...)
- Intermediate scale facilities
- Large scale facilities (NIF, DARHT, Z, ...)
- Theory groups (f-electron physics, etc.)
- Materials modeling
- Code capabilities

Four key areas: Materials, Nuclear, Hydrodynamics and High Energy Density Physics

Studying materials responses under different drive conditions is important

Metals subjected to HE loading have triangular wave shape

• Much of the research on shockwave induced damage (spall, etc) using shock techniques has been done with flat top waves.

• Time & length scales in experiments are important:

- Phase transitions occur in finite times
- Loading / unloading rates affect processes such as shock hardening & damage evolution
- Gun expts. are of similar timeframe to HE drive

Various Techniques can yield a Triangular-Shaped

Shockwave Profile (different time scales)

• -

Studying materials responses under different drive conditions is important

The effect of shock wave profile shape on damage in copper

G.T. Gray III¹, L.B. Addessio¹, E. Cerreta¹, C.A. Yablinksy¹, D.D. Koller², R.S. Hixson², P.A. Rigg², J.D. Maestas²

Figure 2. VISAR records for plate impact recovery experiments.

NNSA Portfolio includes a wide variety of materials: including polymer and foams

Currently, models do not exist for many materials, or are not based on polymer physics (to capture rate, temperature, pressure, pedigree & composite nature)

We are working to develop constitutive models for low density, closed cell foams by coupling theory with experiment (optical and fluorescence microscopies, x-ray tomography)

Nearly Closed Cell Foam

Scott Bardenhagen, Kirk Rector, Dana Dattelbaum LANL

Spall With Mesoscale: Academic Alliances, Institute of Shock Physics, WSU

- Inhomogeneous spall associated with the velocity structure
- Mesoscale heterogeneities influence velocity profiles

Shock wave x-ray diffraction measurements at the Advanced Photon Source

Dynamic compression experiments at the Advanced Photon Source at Argonne National Laboratory

target chamber

APS x-ray beam

detector

X-ray diffraction peak in shock compressed LiF LiF(111) elastic Mg doped LiF(100) plastic

Elastic deformation: Diffraction peak shifts but does not change shape because shock does not introduce disorder

Ambient Shocked

Plastic deformation: Diffraction peak shifts and change shape (width and height) because shock introduces disorder

HPCAT has proven especially useful for high-pressure, high-temperature investigations of metals: EOS, melting, phase diagram, and crystal structure

 Constitutive properties and strength data are required for strength models

- HPCAT characteristics are **well-matched** to our demand for relevant high-pressure research (c. 2009)
- 22 journal articles submitted/published in past year
- 3 PhD students doing thesis research

Shock Physics

Melt on release in Sn

Dynamic Materials Studies

Equation of state measurement with pRad and a powder Gun

HE Science

Detonation **Failure Studies** in PBX-9502

NNSA mission needs have driven the creation of experimental environments to study materials in extremes

Shocks and radiation transport

Precision measurements on Z enabled identification of a triple point on the melt curve of carbon

Quantum molecular dynamics (QMD) calculations predicted the existence of a triple point along the coexistence region of the diamond Hugoniot and how the presence of the triple point would be manifest in the shock velocity data.

8.2

Temperature (10³ K) 8.0 8.7 8.7 8.7 8.7 8.7 8.7

7.2

7.0

M.D. Knudson, M.P. Desjarlais, D.H. Dolan, Science 322, 1822 (2008).

NIF is operational and provides new experimental regimes

Exciting new opportunities to study materials under extreme conditions

High energy lasers have been used to extend solid state physics to the 10 Mbar regime

Widely Acknowledged Accomplishments in Computational (Materials) Science in Support of NNSA Helps Retain Scientific Staff

NNSA Mission-inspired Science

Gordon Bell Prize 2005

Gordon Bell Prize 2006

Gordon Bell Prize 2007

QMD of detonating HE *Nature Physics*, 2008

DNS of R-T instability, 2007

Dislocation Dynamics *Nature*, 2006

Phase transformation at the crystal level, 2009

- Materials data in extreme conditions with right drivers is important to NNSA
 - Requires discovery, fundamental *and* validation data on many materials
- Materials response of interest spans many orders-ofmagnitude in both length and time-scales
- Multiple probes to examine the material response with appropriate drivers is important
- Need to continue training the next generation

Atomistic to continuum Theory, experiment and simulation ←----State-of-the-art tools----→