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Materials Science VAN

Crosses many disciplines
— Physics, engineering, chemistry, biology, statistics ....

Spans from atomistic to continuum
— Each requires theory, experiments and simulation at state-of-the art

Spans basic - applied
— Pure science: basic science studies
— Intermediate: application (mission)-driven basic science
— Applications : what is the right material to use to build __ ?

Spans traditional = hot topics
— Foundry fabrication to nanoscience

Required by many (all)

— Too often the lament of materials scientists is: “Why didn’t you come to talk to us before
you had a problem? We could have helped prevent it.”

Core area in many parts of Department of Energy: Office of
Science, NNSA, Energy Efficiency, Nuclear Energy...
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Materials are used in many extreme environments /i NV Ay
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Example: Radiation-hardened electronics
Designing materials for high-performance use in /M F. Y37

| MMA WS
extreme environments

« Small process changes can significantly
enhance the survivability of electronics
to radiation

 As materials models and process
models increase in sophistication, they
can be used to optimize material
properties

 Key applications include:
— Insensitive explosives
— Radiation tolerant materials
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. — Hydriding-resistant materials

— Reduced weight materials
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NNSA Materials Challenges #MAx

o Developing a predictive capability for materials response in
extreme conditions

— Need materials data at a variety of length scales under extreme
conditions with relevant drive conditions
» Materials Data
— Discovery data — what is the right phenomenology/physics?

— Fundamental data - e.g. elastic modulus, constitutive properties ...
— Validation data - did we reproduce nature?

» Extreme Conditions with relevant drive conditions
— New tools and facilities push the state-of-the-art (and materials)

— Need to understand the role of materials processing
« Developing pipeline for the next generation

C.n

Four key areas: Materials, Nuclear, Hydrodynamics
and High Energy Density Physics




Understanding states of matter over a wide range of
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The prediction of the properties and response of
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materials under high-pressure conditions is a focus of NVSE
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Performing experiments and simulations at the same scale



Dislocation nucleation
Phase Transformation
Spallation

Twin formation
Transformation propagation
Strain Hardening 3D
Dynamic recovery

Damage Evolution (voids / cracks)
Dynamic recrystallization
Adiabatic shear localization
Fracture

materials span nine orders-of-magnitude
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Process-Aware: Linking processing, structure, a s. A= %ﬂ

properties to performance (and specifications AN
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Microstructure image courtesy of E. Lauritsen



“Process-aware” materials sensitivities ,u,
I N A '/Q
Influence many relevant physics models

e EOS - Influence of material chemistry

o Strength — material pedigree, manufacture and
processing, shock hardening

e Instability Growth
e Damage Evolution — microstructure
e Fracture & Fragmentation



Understanding interactions of defects with R

microstructure is important I MA, oS

Catch Tank Target Chamber
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target

New soft capture system developed to study damage evolution
under shock conditions

Dennis-Koller & Cerreta, LANL



Solid-solid phase transformations involve multiple
length and time scales: N A S
Electron and x-ray probes provide key diagnostic togls M t=ersemom=

Original Structure
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|

Nucleation New polycrystal

X

Understanding the response under various drive conditions is critical - | , . ¢

DXRD: Dynamical x-ray diffraction / DSAXS: Dynamical small-angle x-ray scattering interest
DXRI: Dynamical x-ray imaging / DTEM: Dynamical transmission electron microscopy



NNSA requires a suite of complementary gy
materials science capabilities VIS4

» Metallography, thermodynamic and physical property characterization
— Including hazardous materials

— How do materials’ properties change as a function of process, time,
environment?

* Mechanical properties

— Elastic moduli, strength, ...

— Static and dynamic response (DAC, Gas guns, Hopkinson bar, ...)
* Intermediate scale facilities

» Large scale facilities (NIF, DARHT, Z, ...)

» Theory groups (f-electron physics, etc.)
» Materials modeling
» Code capabilities

Four key areas: Materials, Nuclear, Hydrodynamics
and High Energy Density Physics




, Studying materials responses under different drive u ». =

cﬁ‘
conditions is important AVASN 3

Metals subjected to HE loading have triangular
wave shape

: A
* Much of the research on shockwave induced damage
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Studying materials responses under different drive ;a =
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conditions is important pYASEA
o

The effect of shock wave profile shape

on damage in copper
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PA. Riggz, J.D. Maestasz

R Vi T L] 3 P UL ] LR N - - —,
[ : ' : ’ ; a) 3 GPa triangular
s "
r = ¢ : % oy
I LT e Tl s 3 i iy -
AL - T - e o - I il -
A i Vg e RS T el 3
— 0.3k b) 3 GPa flat top
[T | L S
B T L T
2 F: g
E I‘
E L 56-04-02 '
— 0.2+ —8 GPa fiat top =
= L 56-03-14 il

time (us) Figure 3. Composite of the optical metallography of the recovered specimens.

Figure 2. VISAR records for plate impact recovery
experiments.



NNSA Portfolio includes a wide variety of materials: /m ». A L=y

. . &
including polymer and foams IMMA B

Currently, models do not exist for many materials, or are not based on polymer physics
(to capture rate, temperature, pressure, pedigree & composite nature)

We are working to develop constitutive models for low density, closed cell foams by
coupling theory with experiment (optical and fluorescence microscopies, x-ray

tomography)
Nearly Closed Cell Foam

0.0 % 18.0 % 36.0 %
LA-UR-06-4340

Scott Bardenhagen, Kirk Rector, Dana Dattelbaum LANL



Spall With Mesoscale: Academic Alliances, PN A L= g‘
Institute of Shock Physics, WSU aaAaems
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* Inhomogeneous spall associated with the velocity structure

* Mesoscale heterogeneities influence velocity profiles



Shock wave x-ray diffraction TNA L=
measurements at the Advanced Photon Source M. MA &2""4

X-ray diffraction peak in shock compressed LiF

Dynamic compression experiments LiF(111) elastic Mg doped LiF(100) plastic
at the Advanced Photon Source at

Argonne National Laboratory

target chamber APS x-ray beam

Ambient |Shocked Ambient .- .

Elastic deformation: Plastic deformation:
Diffraction peak shifts but Diffraction peak shifts and
- does not change shape change shape (width and
detector gun-barrel because shock does not height) because shock

introduce disorder introduces disorder



Elastic constants (Cij) of Ta
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HPCAT has proven especially useful for high-pressure,
high-temperature investigations of metals: EOS, melting,
phase diagram, and crystal structure
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o Constitutive properties and strength
data are required for strength models
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LANSCE: Proton Radiography is a key capability n yo o8

cﬁ"

for developing predictive capabilities for materials NS
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, NNSA mission needs have driven the creation of experimental ,u . A=)
environments to study materials in extremes N A a4

Rayleigh Taylor
Instabilities

High Mach Number Jets
unstable flows

Materials in the
Extreme

..... atphare

Mass Outflow MHD, thermo-electric, and

Shocks and radiation transport “anomalous” heating
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with QMD predictions.
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NIF Is operational and provides new
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Exciting new opportunities to study materials under
extreme conditions



High energy lasers have been used to extend .
solid state physics to the 10 Mbar regime MMA WS

Ramp compression shows diamond
Is stable and strong to 8Mbar

Diffraction for structure & strength
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Conclusions VA

« Materials data in extreme conditions with right
drivers is important to NNSA

— Requires discovery, fundamental and validation data on
many materials

« Materials response of interest spans many orders-of-
magnitude in both length and time-scales

« Multiple probes to examine the material response
with appropriate drivers is important

* Need to continue training the next generation

Atomistic to continuum
Theory, experiment and simulation
<----State-of-the-art tools----->




