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Season 3, Episode 5: 

Beyond Exascale: Exploring Emerging 
Technologies 

SPEAKERS 
Sarah Webb, Luis Ceze, Bert de Jong, Katie Schuman 

 
Sarah Webb   
Just over a year ago, the Frontier supercomputer at Oak Ridge Leadership Computing Facility became 
the first system to cross the exascale barrier on the TOP500 list, achieving more than one quintillion 
floating point operations per second. The exascale era is still coming to fruition as the Department of 
Energy's Aurora and El Capitan systems near completion and researchers continue to develop 
software and compilers that can efficiently harness thousands of nodes that include CPUs and GPUs.  
 
Sarah Webb   
But entering the exascale era leads to the inevitable question of what's next. Just as generative AI is 
showing capabilities that could reshape science and society, computing is facing a crossroads, the end 
of Moore's law. Computing and its applications will need faster, more powerful processors. But the 
machines that do the work will change altering software and programming, too.  
 
Sarah Webb   
I'm your host, Sarah Webb, and this is Science in Parallel, a podcast about people and projects in 
computational science. In this episode, we'll examine one part of this puzzle, emerging hardware that 
could have a place in future systems. We'll discuss quantum devices, neuromorphic, chips, and 
molecular storage and processing. I'll be sharing parts of my conversations with three separate guests, 
Luis Ceze, Bert de Yong and Katie Schuman. They'll share their perspectives on individual 
technologies and where they might fit in the high-performance computing ecosystem. What are their 
strengths? What are the challenges? And how will we know when new processors are ready for prime 
time?  
 
Sarah Webb   
We'll set the stage with Luis Ceze, who wears dual hats as both computer science professor at the 
University of Washington and CEO at the AI startup Octo ml. He describes himself as a computer 
systems architect, a role he explained to me. 
 
Luis Ceze   
Computer architecture is not just about making a better chip. It's really thinking from a whole systems 
perspective is how do you co-design software and hardware? How do you think about future 
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applications and enable them? And how do you think about thermal aspects? You're gonna get so hot. 
How are you going to cool it and all of these things? 
 
Sarah Webb   
I asked Luis to describe our current situation in high performance computing. 
 
Luis Ceze   
Yeah, I mean, we've enjoyed an incredible run in the progress of basic CMOS electronics. We have 
exascale systems today, Not only that, it's just seems common right to have petascale computing 
devices. And I think, interestingly, we have really exciting applications to drive high performance 
computing systems, not just in very specialized settings in in science, in scientific development, in R&D, 
but also in applications like AI. And you've seen just recently we've seen this transformation just in the 
last couple of months in people using these massive-scale language models like ChatGPT and GPT-4 
that does amazing things. And those are just about the most compute-intensive applications that 
captured people's imaginations in the history of computing. It's also very exciting, because now we 
have exciting applications.  
 
Luis Ceze   
And we have developed methodologies to design very complex systems that are highly heterogeneous. 
Today, you not only have, you know, CPUs, but also you have specialized compute units in the form of 
GPUs and specialized AI accelerators and accelerators for cryptography, compression. And so we've 
designed very complex systems. That's great-- that's going to take us a bit further building better and 
better computers. But I think everyone probably heard it multiple times that we are nearly the end of 
scaling of CMOS, you know, some people call that the end of Moore's law. But people have been 
predicting the end of Moore's law for a while. It's unavoidable that technology is getting close to its limit 
because you cannot miniaturize beyond a certain point. Emerging technology is just unavoidable if 
you're going to continue to build better and better computers. 
 
Sarah Webb   
Bert de Jong of Lawrence Berkeley National Laboratory made a similar point in our conversation about 
quantum computing. 
 
Bert de Jong   
One of the things that I realized about eight years ago is that classical computers cannot scale forever. 
It's just we cannot make them smaller; we cannot make them faster. There's too much energy that we 
have to put into that. So I started to look more at what are other simulation, computational tools that we 
could use. That's where AI and quantum computers came around, and it's like quantum computers has 
a lot of opportunities. They have the opportunity to do simulations that are of an exponential complexity, 
which means they can do a lot of computation much quicker than they can do on a classical computer. 
 
Sarah Webb   
Over the last several years, quantum computing has become a key part of Bert's research. 
 
Bert de Jong   
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I do a lot of virtual experiments on computers. So I do chemistry-, materials-type of experiments that 
you would do in a lab. I just do them on a computer. And so my interest really is trying to solve 
important scientific problems relevant to society. Can we find better batteries, a better way to capture 
sunlight and convert that to energy, capture greenhouse gases, and all of those kinds of big scientific 
challenges. 
 
Sarah Webb   
Quantum computers are exciting because subatomic particles can exist in multiple states at the same 
time until they're observed, a property known as superposition. Those same particles can also 
experience entanglement when the behavior of one particle is connected to that of others distant from 
it. For computing, that means the qubits -- the basic units of a quantum system -- are not tied to simple 
1s and 0s. 
 
Bert de Jong   
The challenge with quantum computers, which we realized when I started to work on that, is, one, they 
are noisy. And, two, we don't really know how well we can run calculations, simulations on these 
quantum computers. So that's where I got really interested in trying to find better ways to run 
simulations on quantum computers, understand where the challenges are, and actually develop 
strategies and approaches and algorithms and software to make quantum simulation or simulations of 
chemistry models to actually get chemistry simulations run on quantum computers. 
 
Sarah Webb   
In addition to his own research, Bert is deputy director of the Quantum Systems Accelerator, one of five 
centers funded by the Department of Energy as part of the National Quantum initiative. QSA is led by 
Berkeley Lab and includes 15 institutions across the national labs and academia. 
 
Bert de Jong   
What we're really focusing on is scaling up and building more accurate quantum computers in three 
different types of superconducting qubits, trapped ions and cold atoms. 
 
Sarah Webb   
I'm going to pause briefly and include background information from a version of my interview with Bert 
that appears in ASCR Discovery. There's a link to that in our show notes. Superconducting qubits are 
trips constructed with Josephson junctions. Those structures, weakly link superconductors, and current 
flow between them can produce superposition and entanglement. Trapped-ion and cold-atom qubits 
are both trapped-based approaches. Trapped-ion qubits are held in place by an electric field. Cold-
atom, qubits are trapped by tweezers made of light. Lasers coax entanglement and rotate qubits 
between 0 and 1. 
 
Bert de Jong   
Why are we doing all three? Let's say we learned something in trapped ions. It's something that we 
potentially could apply to a quantum computer build superconducting qubits. So we're really trying to 
not just build architectures to better qubits, so to speak, but also trying to figure out how we can scale 
them up to large number of qubits. To give you a couple of examples, we've been there for about two 
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and a half years. We actually have a cold-atom system that is of the scale of 256 cubits; we've been 
able to do real material science simulations at that scale. It's a very different technology and a different 
approach to quantum simulation compared to trapped ions and superconducting qubits.  
 
Bert de Jong   
Where with the trapped ions, we just are in the process now of building the first trap that can hold about 
200 ions. So that gets to the same scale as what I just mentioned for the cold atoms. If you look at 
superconducting qubits, we are now in the order of 25 qubits that we can actually do. And it's not just 
building more, but also trying to find better ways to control the qubits while you have them. You need to 
operate on them. So how do you do that with large numbers of qubits? That's a completely different 
problem. So we're working on control software, control hardware to be able to run these kinds of qubits. 
Eventually, we also need to be able to build these in larger systems, because we cannot just grow one 
trap or one system continuously. So we have to start thinking about what do we do next? If you have 
1000, 10,000? How do we actually group them, communicate between them, operate on them? That is 
lots of challenge, and then that's more on the hardware side. We're also doing a lot of work on the 
algorithms and software side? Because eventually, even if we built his quantum computers at this 
scale, we want to actually solve real scientific problems. Well, there's lots of questions one can ask: 
How do you know that you get actually a quantum advantage with a quantum computer? So we have 
been working on developing protocols to actually quantify if you're getting a quantum advantage with a 
quantum computer. 
 
Sarah Webb   
Work at the Quantum Systems Accelerator has demonstrated a theoretical advantage on a trapped ion 
system with 15 to 16 cubits. Bert says, 
 
Bert de Jong   
We do a lot of research around how we can run real science on there. So we have some research 
programs focused again on the chemistry materials, but also in nuclear physics and high-energy 
physics. And trying to understand how we can actually use these quality computers within the quantum 
system accelerated to do your real science. 
 
Sarah Webb   
Neuromorphic computing offers a completely different approach and other strengths, including the 
potential to use far less energy, up to thousands of times less power than today's CPUs and GPUs. I 
talked with Katie Schuman, an assistant professor of computer science at the University of Tennessee 
in Knoxville, about that. 
 
Katie Schuman   
You might be able to tell from the name that neuromorphic means brain-shaped computing. And so in 
the field of neuromorphic computing, we're looking to rebuild computing from the ground up starting at 
the materials and devices all the way up to the way that I think about it from a computer science 
perspective. 
 
Sarah Webb   
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Katie started working on neuromorphic computing and machine learning as a graduate student, and for 
six years at Oak Ridge National Laboratory, before taking her new job last year, 
 
Katie Schuman   
The algorithms and applications rethink every aspect of the compute stack and look at all of it from a 
more brain inspired perspective. So we're talking about looking at new materials that can more 
accurately replicate what's going on in biological neural systems, all the way up to what I'm working on, 
which is figuring out what the algorithms are that we can leverage these properties of brain-inspired 
computing to do things like machine learning, but also computing applications more broadly in a new 
way. My personal research is really diverse because I interact with people who are doing hardware 
development and coming up with new ways to build computers. But I also interact with neuroscientists 
to take inspiration from the brain into how we're developing the way we're doing computing. Then I also 
work with people who want to use neuromorphic computers to do something interesting. So my 
research is all about coming up with the new approaches to do computing, but also figuring out how to 
design the future hardware to meet the computing needs that we have maybe for an edge computing 
application. How do we actually make them do something useful? And are they better than other 
computing applications or computing systems for those applications? Those are the questions we're 
trying to answer. 
 
Sarah Webb   
Like neurons, brain inspired hardware typically spikes to send a signal after it reaches a threshold level. 
 
Katie Schuman   
One of the big advantages to neuromorphic and brain-inspired hardware more broadly, is the energy 
efficiency aspect of it. We're really targeting orders of magnitude lower power than conventional 
computing systems. And so with that particular property in mind, there's a lot of opportunity to put 
neuromorphic at the edge for edge applications, everything from your smartwatch to your smartphone. 
So you know, conventional things that people are interacting with, on a regular basis, your smart 
speaker at your house, things like that towards, you know, smart sensors that are deployed out in the 
world. As we do increasingly integrated and smart cities and transportation, we really are going to need 
these very low-power computing operations. Because we are increasingly devoting more and more 
power to computing.  
 
Katie Schuman   
One of my favorite projects that we're working on right now is a collaboration with researchers at Oak 
Ridge National Lab looking at applying neuromorphic computing to an edge computing application in 
the nuclear radiation detection space. And this is an application where they want a very, very low power 
implementation, they could operate at the edge in the field indefinitely on like a small solar panel. And 
so the question was, for this particular application, can we come up with the right machine learning 
approach that will map to neuromorphic hardware and that will meet the power requirements for that 
edge application and will get as good of an accuracy as other techniques all at the same time? And so 
having all of that constrained space and working directly with the domain experts in nuclear engineering 
and dealing with both simulated data and real-world data, it's really exciting to try to figure out how to 
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make all of these pieces come together to build a neuromorphic computer that can actually operate on 
a real-world application. 
 
Sarah Webb   
Katie is also working with transportation researchers who are exploring neuromorphic computing, for 
self-driving cars, and to optimize fuel flow within engines. 
 
Katie Schuman   
We're also working with people in the high-energy physics community where we're looking to apply 
neuromorphic computing to monitoring data that's being collected in real time at their large-scale 
detectors. My meeting schedule on any given day, I'm pivoting between a discussion about radiation 
detection to internal combustion engines to neutrinos, high-energy physics just in applying 
neuromorphic computing. 
 
Sarah Webb   
Katie also works with researchers who build neuromorphic hardware and want to apply it to relevant 
problems. For example, she's working with a large group of researchers and institutions, including 
Sandia National Laboratories, the University of Texas at Austin and New York University, on emerging 
device types with magnetic tunneling junctions and tunnel diodes. Tthey're potentially interesting for 
neuromorphic computing, but they also operate in an inherently random way, which could be useful for 
probabilistic computing. That's another strategy for addressing problems that are difficult for classical 
computers. 
 
Katie Schuman   
Think about using these devices as like flipping a biased coin, so that you're more heavily weighted to 
get heads than a 50/50 shot. So that project is actually called coin flips because we frame everything in 
terms of flipping these biased coins, which is how these devices function. And so with that project, 
we're working with material scientists, and physicists and electrical engineers who are working with the 
materials and the devices level to build these. And then I work at the architecture and algorithms level 
as we're trying to come up with the circuits and the algorithms that can actually benefit from using these 
devices at the low level. And again, then we're interacting with the application users who would 
ultimately use these. And so from that perspective, it's very much like we're starting with the hardware. 
And then what can we do with this really cool hardware implementation, rather than the opposite side. 
Where we're starting with the application than nuclear engineering? And saying, how do we make the 
hardware that's going to do that? And with these two different sets of projects, the hope is that we can 
bridge the gap between the two of them and actually say, "Oh, well, maybe that nuclear engineering 
project will work with this particular set of devices." I also work with people who are doing quantum 
materials-based neuromorphic systems and biomimetic materials-based neuromorphic systems and 
memristive neuromorphic. So all these weird devices that I as a computer scientist only sort of know 
what's going on, but enough to where we can try to figure out how to use them effectively. 
 
Sarah Webb   
Luis Ceze, who we heard from at the top of this episode, spends a significant portion of his time 
working on molecular data storage and computing, yet another emerging technology. 
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Luis Ceze   
We've been using DNA, but also been looking at proteins, too. These molecules can do amazing 
things, right. So they can store information in a very dense way. And you can also manipulate 
information in a very parallel, an energy efficient way. It's not particularly fast in terms of latency is 
extremely parallel. 
 
Sarah Webb   
There is an incredible amount of biological data stored in DNA. 
 
Luis Ceze   
So nature evolved DNA to store data that maps to genes, right. So DNA contains blueprints to build 
proteins and proteins are, do all sorts of amazing things in living organisms, right? So, but DNA is a 
fairly general data storage molecule just four bases, ACTG, you know. If you can develop mechanisms 
to map digital data strings of 1s and 0s into strings of ACTGs, and then manufacture the DNA molecule 
physically make the molecule that encodes that information, you can store them away. And that's when 
things get interesting. DNA is extremely dense, like each base is on the order of a fracture of 
nanometer like 0.34 nanometers that you're talking about densities that are thousands and thousands 
of times denser than the limits of what we could get even with 3D flash storage, for example, to denser 
than anything that we have in mainstream digital data storage today. And that's the process of writing.  
 
Luis Ceze   
And when you read it, you run it through a DNA sequencer— the same exact sequencer used in 
genomics—you get long sequences of ACTGs back, and you can decode that back to the digital 
information. And you know, this is just amazing. Look, this looks general, but it took a while for the 
technology to write and read DNA to mature enough for this to start to be viable. DNA storage started 
becoming more and more interesting and viable in the past decade as our ability to write DNA improved 
very, very fast, in cases faster down the progress of CMOS electronics that we just talked about. So the 
process works is becoming closer and closer to reality, right? So I've simplified a lot how this works. In 
fact, there's quite a bit of computing involved in mapping bits to DNA that relay it back. And guess what, 
that uses a lot of AI as well, because it's a very, very noisy environment. And the way you sift the actual 
information through the noise is by applying a lot of error-correcting code and a lot of AI-like techniques 
to encode and decode the information. So our lab has been doing quite a bit of work in this, but there's 
several other, you know, significant contributors around the world. There is a, an alliance today called 
the DNA Data Storage Alliance, and that shows that this is this is becoming closer and closer to reality,  

 
 
Sarah Webb   
The DNA Data Storage Alliance was founded in 2020. By Illumina, Microsoft, Twist Bioscience and 
Western Digital Check out the link in our show notes. A limit for molecular systems is that the process 
of writing and reading DNA molecules remains slow compared with the speed that today's computers 
can manage electronic memory. Luis notes that it's improving rapidly but remains at least 10 times 
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slower than today's electronics. At the high end, researchers have stored and retrieved several 
gigabytes of data using molecular methods.  
 
Sarah Webb   
But molecules offer some advantages for certain types of computational problems, Luis talked about 
how his group has harnessed molecules’ ability to bind to one another as a strategy for doing similarity 
searches the heart of many AI algorithms. For example, in searching for an image of a bird, a computer 
isn't looking for an exact match to an ostrich or a hummingbird, 
 
Luis Ceze   
You don't map it by let's just say birds: blue bird, red bird, different species and all they look like birds. 
And so that doing that similarity search in regular computers today is pretty computationally intensive, 
you have to compute distance in this high-dimensional space, and we demonstrated the ability to do 
that in directly molecular form. 
 
Sarah Webb   
That's because they realized that a similarity search algorithm can be matched to molecules, taking 
advantage of characteristics such as shape, charge, and other features that allow molecules to bind to 
each other. 
 
Luis Ceze   
So we developed algorithms that map feature vectors, descriptors of images, into DNA sequences, 
such that if the vectors that correspond to images are similar enough in their high dimensional space, 
their corresponding molecules are more likely to bind to each other. So we built essentially this pool, a 
database of a bunch of images encoded in this form and put a magnetic particle with a DNA attached to 
it, that corresponds to the image that you want to search. The reason this is interesting is that here's an 
algorithm that is very, very data-intensive. Like when people do this today, in regular computers, there's 
over trillions and trillions of images, that takes quite a bit of compute. But now in molecular form, it just 
happens in a very parallel way, a very energy-efficient way. That's one clear example of why molecular 
computing, then now putting on my computer architecture hat, looks very interesting. But it's not 
general. Like we're not saying multiply a matrix or evaluate this expression. We're talking about execute 
this search, this this search stat. It's very, very specialized, but it's very efficient to do in molecular form. 
 

Sarah Webb 

The potential for all these technologies is tantalizing, but as hardware is improving and changing that 
affects software. At the same time software developments influence hardware. 

As I was talking with Katie, I was trying to find an analogy to express that idea. 

I'm not sure if this analogy is appropriate, but it's almost like you're having to think about  constructing 
the highway system and the cars that go on it all at the same time. 

Katie Schuman   
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Absolutely, yes, this is the most challenging and most exciting part of this field is that we're building 
software for computers that don't exist yet. And we're building computers for software that doesn't exist 
yet. And everybody's just out there working on it at the same time, and occasionally, we're talking to 
each other. That's something we're trying to do in the neuromorphic community is really do this 
collaboration between the two communities, so we're doing a co-design process. But that's not 
happening across the board for all of these emerging processors. but it's increasingly going to have to 
happen where you have to be having these discussions so that we're not just building them 
independently and that we end up at the end with a car that really doesn't map to the highway that we 
built, for example, or vice versa.  
 
Katie Schuman   
Neuromorphic computing hardware is still very much in its research and development phase. So large-
scale neuromorphic chips exist, but really only for the research community, and they're still very much 
under development. And so it's a challenge because the hardware is constantly evolving. And we're 
trying to you know, I'm the programmer trying to be like, what does it look like today, the hardware, 
what's changed? So that's challenging, but at the same time, it's a, it's an opportunity for us to say, 
Okay, I understand the hardware changing, could we change it this way, so that it is better for my 
application? I always like to frame my challenges as also as opportunities to remind myself this is really 
hard, but it's also an opportunity to do something really interesting.  
 
Katie Schuman   
The other major challenge is that we're still actively developing the algorithms for these systems. So 
nothing is set in stone, all of the algorithms that we've developed over the course of machine learning, 
and all of the advances that we've seen, some of those translate into neuromorphic computing, but not 
all of them. And so we have to make adaptations. And we have to shift and change the way we're 
actually applying machine learning algorithms to our data for this hardware and looking to 
neuroscience, for inspiration on how to do that. Again, that's a huge challenge that I think that is the big 
challenge that I work on is how to actually make those algorithms do something useful for us. But it's 
also an opportunity to pull in all of that inspiration and potentially innovate on what we can do with our 
machine learning algorithms, particularly on these sorts of applications where we have a resource-
constrained environment, 
 
Sarah Webb   
Similar challenges exist in quantum computing, Bert and I discussed the problem of quantum software 
and translating science into a programming language. 
 
Bert de Jong   
It's not a trivial thing to do. There is no programming languages that allow us to just take a problem and 
then say: Here, write it for quantum computer, compile it and it runs on a quantum computer. That didn't 
exist. So we started to really work on how can we build compilers? How can we build programming 
languages? So we can take a scientific problem [and] translate it on aquatic computer. 
 
Sarah Webb  
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And then there's addressing noise from the science that underlies these experimental processors. Bert 
also talked about how this plays out in quantum computing. 
 
Bert de Jong   
We're doing effectively physics experiments when it comes to all of these quantum technologies. Well, 
physics experiments don't happen in isolation. Nothing around us lives in isolation, we always have an 
environment that perturbs the things. So that's no different for these quantum systems. They're just a 
lot more sensitive to it. So in case people don't realize this, but classical computers, the chips have 
gotten so small that these chips make errors. So what do we do? We actually do error correction. So 
we run three, four or five of the same experiments at the same time and just do a majority vote to 
decide what the right answer should be. Well, doing that kind of an approach on a quantum computer is 
a lot harder. So you could then you could do full error correction. But we know that if you want to do full 
error correction, knowing how much noise these quantum computers have right now that we would 
need tens of thousand or hundreds of thousands, potentially millions of qubits to even have maybe a 
couple of 100 really good working qubits. So we need a lot of other qubits to make sure that we can 
correct the errors that we see. So the root of it is, as I said, it's physics. We tried to engineer as much 
as we can the noise away. So we learn what the noise source is, and find a solution for it. Early 
superconducting qubits were found to be very sensitive to electromagnetic fields, for example. If you 
came by with your phone, you would create some problems. So they put copper shielding around it to 
minimize those effects. But even the smallest effect, at these superconducting, low temperatures can 
perturb the system. We're never getting a perfect quantum computer. We don't even have a perfect 
classical computer. 
 
Sarah Webb   
So Bert has focused on solving the error problem. 
 
Bert de Jong   
So what we are trying to learn is how we can control these errors, how we can mitigate these errors 
both on the hardware software and algorithms side. How can we correct these errors? How can we 
build algorithms that are more efficient, so that we don't have to do as many operations that will lead us 
to get a more reliable result? We take a science problem and try it on a quantum computer, see where 
it breaks down, learn from it, develop new ways to get more reliable results out of a quantum computer, 
and then try that. If it still doesn't work, we add another layer of error mitigation, till we get the reliable 
end so that we can get. That's just us effectively learning how a quantum computer works, where its 
flaws are and finding ways to do it better. 
 
Sarah Webb   
Luis Ceze and I also talked about noise and what that means for molecular storage and computing. 
 
Luis Ceze   
I risk sounding overly philosophical, it may seem like it's a problem. But I think it's also it's just inherent. 
That's how you build robust systems. And it's hard to argue something more robust than what nature 
has. Sure we still have, you know, single points of failure in organisms. But, by and large, they're very, 
very resilient and robust, especially on a population scale. So the way we deal with that is, first of all, to 
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remind, you know, the audience here that electronics in general, is, is noisy, right. So the reason that 
we did the we didn't build more analog computers is because our computers are noisy. So we go in and 
overlay a digital abstraction on top of it to deal with noise. So that's like a very, very, very basic level. 
And then on top of a digital system, they can still be noisy. You build error-correcting algorithms, your 
build, essentially give an abstraction of very robust writing and reading information in whatever medium 
you have. So that's whole feuds in coding theory and how you encode information in a in a reliable way. 
But then even on top of that, it can be the algorithms that are inherently, by the way they're constructed, 
robust to imperfections, right. So we just talked about similarity search. The whole point there is that 
you're going to find something that's similar enough, not hat it is exactly, you know, a perfect match. 
And in a lot of modern machine learning algorithms work when you train them, it's all about 
approximation. It's all building essentially interpolating functions, building functions that can make 
predictions out of a large collection of data that's deemed noisy to begin with. 
 
Sarah Webb   
In molecular storage and computing, Luis emphasizes that large amounts of data aren't encoded within 
single molecules. 
 
Luis Ceze   
So what we do is we chop this up into small little chunks. Each chunk is on the order of say, 100 bits or 
so. And each chunk itself has error-correcting methods that we encoded in a way that uses more than 
100 bits, but there are several mappings of different bits to the original information. So even if you have 
some bits that are off, you can see reconstruct it. So there's error-correcting code within each one of 
the chunks, but then across chunks, we add extra chunks such that if any chunk is missing, you can still 
recover the whole information. So it's both within and across. You don't have a single copy of every 
given item, right, we can have quite a few, you know, think on the order of tens or hundreds of physical 
copies of the same original molecule. Each one of them might be slightly different, but they originally 
mapped to the same intended one. So now we have three forms of redundancy, within this chunk, 
across chunk and in physical redundancy. And with all of that we demonstrated by really stretching to 
the limit the ability to recover information with all sorts of adding here, removing molecules, and entirely, 
you know, diluting it to an extreme degree, we've been showing, demonstrating very, very strong 
robustness in writing and reading information. 
 
Sarah Webb   
An important challenge in this work is figuring out software, not just for quantum systems as Bert 
mentioned, but developing compilers and frameworks so that researchers outside these specialized 
areas can use new hardware. Katie emphasize this issue in neuromorphic computing, which is a field of 
just a couple thousand researchers, many of them are hardware developers, or people interested in 
applications rather than software developers. 
 
Katie Schuman   
What we are missing right now more than anything, from my perspective is the software. We really 
need software frameworks in place. We need things like compilers. We need software abstractions to 
be defined that just don't exist right now in the field. And that's partially a consequence of the makeup 
of the community because we have a lot of people who are working on hardware. And then we have 
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some people like me who are more focused on things like machine learning algorithms are people who 
are interested in applications. But what we don't have a lot of— in fact, hardly any of— people who 
know how to build system software, who know how to build things, like compilers, who know how to 
build programming languages, who know how to define these abstractions. Even though I'm a 
computer scientist, that's not my background. So I'm not equipped to do that effectively for a new, 
emerging hardware platform. In neuromorphic, we have the hardware. It exists— people are building it 
all the time. We have these research chips that you can have access to. What we don't have the 
software tools in place that make it easy for people to come in and start using that hardware on their 
new applications quickly. We need the ability to build out the software tools so that anybody can sit 
down and start using a neuromorphic computing system, and not just people who are experts in the 
field. 
 
Sarah Webb   
It's incredibly difficult to put a timeline on when and how quantum, molecular and neuromorphic 
systems could enter the mainstream computing landscape. But I asked about innovations that could 
signal that they're ready for broader use. Here's Luis on what that could look like for molecular storage. 
 
Luis Ceze   
I know folks have been using this to store very precious information as you can think of from things like 
cryptocurrencies that you really want to store completely off the grid, let's say to things that are nation-
states information that is secret or, you know, family information is very precious. I call this boutique 
use cases. And that's viable today. But the U.S. government has been very active in investing in 
molecular data storage technologies, and industry has been very active, too. 
 
Sarah Webb   
But he thinks a jump to nearly terabyte-level storage would be the point where molecular technologies 
will become much more interesting. 
 
Luis Ceze   
My academic speculation here, I think we're going to see something really interesting within the five-to-
ten-year range where we're going to select pretty exciting archival storage applications, there. You're 
going to start see applications like data-intensive compute tasks, like search appearing and being 
interesting. Can you imagine large repositories of media information stored in DNA and searching for it 
for various purposes? I think that's probably within the one to two decades away. We tend to 
overestimate what we can do in the short term and underestimate what we can do in the long term. 
 
Sarah Webb   
Bert highlighted scientific milestones that could signal that quantum systems are large enough and 
robust enough to make their mark. 
 
Bert de Jong   
In the scientific community, if we can use quantum computer to discover a new solar-cell material that 
is 10 times better, that would be a metric for us chemists. We have set for a long time a benchmark 
around what's called the FeMoco system. We're actually trying to find a natural way to convert nitrogen 
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to ammonia, which is a very important fertilizer problem, which takes like about a percent of worldwide 
energy these days, and we're trying to build a natural alternative to that. If we can actually use that to 
build an alternative, that would be a win. But are we there yet? That requires 100 to 200 very good 
qubits, and we're not there yet. 
 
Sarah Webb   
I asked each of them to talk about what future supercomputers might look like. Would emerging 
processors be integrated into systems that also have GPUs and CPUs? Or would we see smaller 
systems focused on specific applications? And the key take home message here is heterogeneity, and 
here's what Katie had to say about that. 
 
Katie Schuman   
I suspect we're always going to have the very large scale systems. But right now, for the most part, 
when you look at a large-scale system, like Frontier at Oak Ridge, all of your nodes in Frontier are the 
same. They have heterogeneous within the node, though, so there's CPUs and GPUs, but every node 
is the same. I suspect that in the future, our nodes are going to be heterogeneous across the compute 
system, where not every node is going to have a neuromorphic system, not every node is going to have 
a quantum system, but some of them are. You're just going to have more heterogeneity not just within 
the node, but across nodes.  
 
Katie Schuman   
And so I think these systems are still going to be large, because there are certain applications that map 
well to those types of systems. But I think that they're going to be increasingly heterogeneous. And it's 
not just going to be every node is identical, but you're going to have a lot of specialization across one 
machine. Now, how we program that and how we actually that's a big challenge that the computer 
science community is going to have to grapple with. But I think that's the direction that will end up going 
is that, yeah, maybe you're not going to have a quantum computer in every node, but maybe you've got 
a couple in your center that are integrated in as part of your system. And you want to be able to use 
those effectively, as you do everything else. 
 
Sarah Webb   
Luis agrees and points out the relationship to the question of where one computer ends, and another 
begins. 
 
Luis Ceze   
 I think it's going to be highly heterogeneous. It already is today. So it's heterogenous with a given 
specific device technology, now we're going to have multiple device technologies, and we should also 
say that it's not just quantum or neuromorphic. So it's also, you know, 3-5 materials are coming back. 
People are talking about cryogenic computing. There is all sorts of different, say lower-level, device 
technologies here, that's going to be part of the mix. That's just unavoidable, it's already the case is 
going to, it's going to continue to be the case. I think that, depending on the on the type of problem, this 
might be actually multiple, let's say, boxes, each one with their own specific technology that you farm 
out and combine them later.  
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Luis Ceze   
Or I can also imagine this in a single device. I guess I'm trying to get at here probably is that what is a 
computer anyway? These days, like when you run a task, if you go and run a piece of computing, even 
if it's just like a highly specialized. HPC-like application, okay, so you do the large amount of 
computation in certain box somewhere, probably the national lab, you get that output, you process it in 
different way. Now using a different computer and you go and render an image. And then you know, 
you have a like, what is the computer there? Are you calling the computer just what did the majority of 
the computation? Or everything in between, right? So it's already highly-distributed anyway, even 
things that seem like we're just using one computer, you're not. You're probably using, you know, 10 or 
100 different computers in between when you give the input and get the output back. And I think we're 
going to continue seeing that, you know, so but to an extreme degree. And given that some of these 
more exotic technologies that we're talking about requires very specialized conditions, like a quantum 
computer running in these dilution fridges. So in molecular computers, or more likely data-storage 
systems, are going to have fluidics will be around. I think it's unlikely we're going to have this in our 
pockets or even in our offices. We're going to have this in a specialized data center that can provide 
those conditions. In the end, it's going to be a matter of building a system that's an outer loop that puts 
everything together. 
 
Sarah Webb   
Bert speculates that novel processors could influence today's hardware in ways that are hard to 
anticipate. 
 
Bert de Jong   
When we went to the moon what we had to do is develop enormous amounts of technologies, including 
actually chips that we use in our computers that resulted from the vision of going to the moon. I see the 
vision of quantum also having that same role. We learn a lot about the role of quantum in physics and 
in building chips. So there might be a future that things we have learned show up in classical 
computers. So we might, because of the work that we're doing in quantum, develop revolutionary new 
technologies that could be used in classical computing. We're using fast internet right now to 
communicate between different classical computers. If we figure out how to do quantum networking a 
lot more efficiently, maybe a classical computer will be having a quantum network in the future. So 
there is a lot of technologies and advances that are being made that I see potentially ending up in the 
world of classical computing. So it might not be just that we have a classical computer and a quantum 
computer, we might get into a situation where the classical computer is starting to look a lot more like a 
quantum computer, because we're starting to integrate components that we have learned to harness as 
part of the quantum computing revolution. 
 
Sarah Webb   
Luis emphasizes that generative AI and large language models are already rapidly reshaping how we 
program computers and interact with them and that's going to influence the future, too. 
 
Luis Ceze   
The final thing to say, let's reflect on how much is happening right now. And it's all the confluence of all 
the progress in HPC, and computer systems in AI and, everything. And just really think about the future 
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of what we can do with computer is just amazing. And I don't think we are likely to live a moment like 
we're living right now in a long time. 
 
Sarah Webb   
To learn more about our guests, and for additional resources and reading on neuromorphic, quantum 
and molecular computing, please check out our show notes at scienceinparallel.org. This concludes 
season three of Science in Parallel. Thank you for listening, and please subscribe on your favorite 
platform. We'd love to hear your feedback and suggestions. There are links to reach us by email and 
Twitter in our show notes. 
 
Sarah Webb   
Science in Parallel is produced to the Krell Institute and is a media project of the Department of Energy 
Computational Science Graduate Fellowship program. Any opinions expressed are those of the 
speaker and not those of their employers, the curl Institute for the U.S. Department of Energy Our 
music is by Steve O'Reilly. This episode was written and produced by Sarah Webb and edited by Tess 
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