
Earth System Modeling 2.0: Toward Accurate 
and Actionable Climate Predictions with 

Quantified Uncertainties
Tapio Schneider and the CliMA Team



Earth has already warmed 1.2℃ since 1850s

earthobservatory.nasa.gov
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Limiting global warming 
to 2°C would require 
drastic global emission 
cuts

Global GHG emissions peak before 2025, 
reduced by 43% by 2030 

Methane reduced by 34% by 2030

Global GHG emissions peak before 2025, 
reduced by 27% by 2030

To limit warming to 1.5°C

To limit warming to around 2°C

Global GHG Emissions (Gt CO2-eq. yr-1)

IPCC AR 6, Working Group III
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A by-product of 
emission cuts will be 
more warming because 
of reduced air pollution

GHG responsible for all warming 
that occurred

But some GHG warming is masked 
by air pollution (primarily, sulphur 
dioxide)

Human contribution to warming 
2010-19 relative 1850-1900
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In the best-case scenario, we will need to learn to 
live with about 2°C global warming

Simulated temperature 
change at 2°C global 
warming

Change (°C)
Warmer

0 0.5 3.51.5 4.52.5 5.5 6.51 53 72 64

IPCC AR 6, Working Group I, SPM



Because almost all 
climate impacts scale 
with global warming, 
mitigation remains 
critical

Percentage Change in Heavy Rainfall Intensity 
in Southern Asia

Seneviratne et al., Nature, 2016
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But some climate 
impacts are already 
manifest, so adaptation 
is unavoidable

Recent warming tripled risk of 
Hurricane Harvey’s rainfall in Texas

Emanuel, 2017; Risser and Wehner, 2017; 
van Oldenborgh et al., 2017



But the value chain from data to usable climate 
information has gaps in 2 places, impeding 
effective climate adaptation



IPCC AR 6, Working Group I
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Clouds dominate 
uncertainties in climate 
projections; they depend 
on small-scale motions

Cloud scales: 
~10-100 m

Global model: 
~10-50 km resolution

Subgrid-scale processes (e.g., 
clouds and turbulence) are 
represented in ad-hoc fashion 
(not data-driven)

NASA MODIS



Spectra of atmospheric 
turbulence 
(aircraft measurements)

NASA MODIS
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Clouds

Challenge: compute 
scales like (Δx)−3
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Schneider et al. Nature Climate Change, 2017

While computer performance has been increasing 
exponentially, …
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Schneider et al. Nature Climate Change, 2017

We would need 100 billion times currently available 
compute to resolve low clouds globally
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Schneider, Jeevanjee, Socolow, Accelerating Progress 
in Climate Science, Physics Today 6/2021; Morrison et 
al., JAMES, 2020

Below turbulent scales lie yet smaller scales; core 
challenge is bridging scales from small to large

Droplet-scale physics Cloud-scale physics

Scales cannot be bridged by brute force computing

Cloud Effects
Cloud albedo
Cloud cover
Precipitation

Large-scale
variables
Humidity

Temperature

What a climate 
model provides What it needs 

to predictCoarse-
graining and 

closure 
functions



NASA/Goddard Space Flight Center Scientific Visualization Studio

We live in the golden age of Earth observations

CloudSat, CALIPSO, and MODIS



Simulation with PyCLES (Kyle Pressel et al. 2015)

And we can generate data computationally in 
limited-area high-resolution simulations

Simulation of tropical cumulus with O(10 m) resolution (blue: rain)



Simulation with PyCLES (Kyle Pressel et al. 2015) 20

And we can generate data computationally in 
limited-area high-resolution simulations

Simulation of tropical cumulus with O(10 m) resolution (blue: rain)



The Climate Modeling 
Alliance was founded in 
2018 to capitalize on 
the opportunities at the 
intersection of 
computing and data

CliMA’s comprises about 60 
scientists, applied mathematicians, 
and engineers



Data-informed Earth system models must meet 
three critical requirements

Generalizability 
out of sample:

Interpretability: Uncertainty 
quantification 
(UQ):

1. 2. 3.

To predict a climate 
without an observed 
analogue

To trust models that 
cannot immediately be 
verified with climate-
change data

To estimate risks for 
climate change 
adaptation



The 3 requirements can 
be met by combining 
the best of reductionist 
science with data-
driven approaches

Leads to expressive models and data-
hungry methods

Makes generalizability, interpretability, 
and UQ challenging

Generalizable and interpretable (e.g., 
Newton’s Law of Universal Gravitation)

Reaches limits in complex systems 
such as the Earth system

Deep learning’s success rests on 
overparameterization:

Combine both, traditional 
reductionist science with AI 
where reductionism 
reaches its limits

Reductionist science’s success 
rests on parametric sparsity:



Advancing theory to promote parametric 
sparsity

Harnessing diverse data for calibration and 
UQ 

Leveraging computing power (e.g., GPUs) 
to enable distributed local high-resolution 
simulations

More accurate climate predictions with 
quantified uncertainties by

CliMA is making an end run 
around the factor 1011 problem 
through a physics/AI hybrid 
approach

Targeted High-Resolution Simulations

Earth
System
Model



Statistics are what matters for climate

Their spatial smoothness mitigates 
observation/simulation resolution 
mismatch

Climate-relevant statistics can include, 
e.g., emergent constraints and 
precipitation extremes

Treats machine learning as inverse 
problem, rather than supervised learning

Guarantees stable models

But loss function evaluation (accumulation 
of averages) is extremely expensive

To be able to harness 
diverse data, we learn 
from time-averaged 
climate statistics
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For example, current models simulate seasonal 
cycle poorly, yet it is informative about climate 
change response

Observations in black 

Magnitude of expected global warming 
response by 2050 indicated by arrows

Models colored from yellow to red in 
order of increasing equilibrium climate 
sensitivity

Model biases correlate with ECS
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Schneider, Jeevanjee, Socolow, Physics Today 6/2021; 
data processing by Dave Bonan
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Graven, PHYSICS TODAY, November 2016, page 48). But how the
land carbon sink changes as CO2 concentrations rise remains
unanswered. Models differ widely in their simulation of past,
present, and future carbon uptake. Consider, for example, the
seasonal cycle of CO2 in high northern latitudes, which mirrors
the seasonal cycle of boreal vegetation. Photosynthesis pre-
dominates during the growing season and draws carbon from
the atmosphere. Respiration predominantes during winter-
time and releases carbon back to the atmosphere. Figure 5d
shows that the amplitudes and phases of the  high- latitude sea-
sonal CO2 cycle differ among models and o"en do not fit ob-
servations well.

The discrepancies among seasonal cycles in the models per-
colate into the responses of the land carbon sink to rising CO2
emissions. Elevated CO2 concentrations fertilize plants by en-
hancing photosynthetic carbon uptake, unless water and nu-
trient availability limit the uptake. At the same time, increased
temperatures enhance respiration and also affect photo -
synthetic uptake, which leaves uncertain the magnitude of the
net effect of rising CO2 on the land carbon sink.

When the atmospheric CO2 concentration doubles, some
models produce a global land uptake of 7% of the emissions
(light green model in figure 5d), whereas others suggest a 30%
uptake (dark green model in figure 5d). The global carbon up-
take by the land biosphere under rising CO2 scenarios appears
to correlate with the amplitude of the  high- latitude seasonal
cycle in the models, so seasonal data may constrain model re-
sponses to increased CO2 concentrations.

The land biosphere’s net uptake of CO2 is the small residual

of the much larger gross carbon fluxes associated with photo-
synthesis and respiration. Modeling progress has been hin-
dered by poor knowledge of the gross fluxes. But new satellite
data are upending the status quo. Soil moisture and vegetation
cover are now being measured in unprecedented, hyper -
spectral detail. It has also become possible to estimate photo-
synthesis from space by measuring chlorophyll’s  solar- induced
fluorescence (SIF), which detects the excess  near- IR solar en-
ergy that chloroplasts cast off during photosynthesis.12 (See the
opening image.) Combining satellite measurements of SIF and
CO2 is now enabling scientists to disentangle the gross fluxes
associated with photosynthesis and respiration.

Models of the biosphere are more difficult to design than
models for physical aspects of the climate system. There is no
straightforward way to  coarse- grain the land or ocean bio -
sphere. As a result, how to describe the biosphere is less clear:
Should it be described at the level of genomes, plant functional
types, biomes, or somewhere in between?

Nonetheless, the biosphere also obeys conservation laws,
from energy to carbon mass, and  small- scale  processes— for ex-
ample, photosynthesis, stomatal conductance, and plant
 hydraulics— are understood from first principles. The task for
theory is to incorporate what is known on small scales into
 coarse- grained models that can effectively learn from data.
Given the  less- certain structure of biosphere models, ML tech-
niques for  data- driven model discovery, within the constraints
of conservation laws, may improve biosphere models. Advances
in computing and the use of GPU accelerators enable increased
resolution and additional variables. A substantial improvement

CLIMATE SCIENCE
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FIGURE 5. SEASONAL CYCLES (monthly
data from January through January) in
models (colors) and observations (black).
(a) This plot shows cloud cover over the
ocean off the coast of Namibia (10–20 °S,
0–10 °E). The models are  colored from
 yellow to red in order of  increasing
 climate sensitivity. (b) Similar to panel a,
but this plot presents  near- surface air
temperature over the Arctic (60–90 °N).
(c) Similar to panel b, but this plot shows
Arctic  sea- ice extent. The arrows in panels
 a– c  indicate the magnitude and direction
of the expected global warming response
by 2050 under a high carbon dioxide
emissions scenario; in panel a, the sign of
the expected change is unclear. Models
and observations in panels b and c are
 averaged over the years 1979–2019
 (except for the cloud observations, 
which are averaged over 1984–2007). 
(d) Atmospheric CO2 concentration is
shown as deviation from the annual
mean for 1994–2005 at Point Barrow,
Alaska.15 Models are colored from lighter
to darker green in order of increasing
global carbon uptake by the land
 biosphere in a CO2 doubling simulation.16

(Data processing and plotting courtesy of
David Bonan and Alexander Winkler.)



Cleary et al., JCP, 2021; Dunbar et al., JAMES, 2021, 2002; Howland et al. JAMES 2022 

Treat learning about parameters θ from data as 
inverse problem, and speed up Bayesian learning 
1000x through ML emulators

Sample parameter 
space efficiently 
(Kalman algorithms)

Train emulator on 
calibration data (GP, NN, 
RFM, ...)

MCMC sampling from emulator 
to get posterior density

Calibrate Emulate Sample

𝓎 = 𝒢(𝜃) +  𝜂 𝒢(𝑚)(𝜃) ≈ 𝒢(𝜃) 𝓎 = 𝒢(𝑚)(𝜃) + 𝜂(𝜃)

For a map  (climate model) from a space of parameters  to climate statistics , 
we want to learn about distribution of the parameters 

G : Θ → Y Θ Y
θ



At CliMA, we are 
working on a new 
Earth system model 
in which all 
components jointly 
learn from data

Targeted High-Resolution Simulations

Earth
System
Model
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HOW DOES THAT 
ACTUALLY WORK?

An example from modeling clouds



Goals for atmosphere model development

Advance physics of 
parameterizations

Use data extensively Set new standards 
in software quality

1. 2. 3.

Unified parameterizations 
from controlled 
approximations for SGS 
dynamics and 
microphysics

Build automated 
pipelines for calibration/
UQ of parameterizations 
with simulated and 
observed data

Make software 
performance-portable 
and easy to use for 
research



Projection uncertainty primarily due to low clouds

SSP3-7.0 scenario (IPCC, 2022)

More clouds, less warming
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Current models cannot represent low clouds 
accurately

Brient et al., JAMES, 2019
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Unified physics-based model of clouds

Tracers

Continuity

Closure functions

Tan et al., JAMES (2018), Cohen et al. JAMES 
(2020), Lopez-Gomez et al., JAMES (2020)

Conservation laws where simplified unknowns are consistently encoded



Learning from climate-relevant data

Schneider et al., JAMES (2017); Lopez-Gomez et al., JAMES (2022); Dunbar et al. JAMES (2022)

Data query through active learning

Targeted data acquisition Process-level learning & UQ



Large library of simulated data (>500 LES)
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Accurate representation of low clouds
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Unified turbulence and convection scheme

EDMF: A unified scheme that captures all of Earth’s cloud regimes

Ongoing: First global climate simulations with unified model

Stratocumulus cloud Shallow cumulus Deep convection
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Developed a unified physics-based model of 
turbulence, convection and clouds.

Produced an extensive dataset of cloud regimes 
and a machine learning framework to learn from it.

Our model reduces biases in crucial cloud regimes 
by a factor of ~3 with respect to current models 
(offline).

Accomplishments

Increase data coverage (with 
Google) and calibrate with Earth 
observations, to train and validate 
model from the equator to the 
poles.

Testing in global atmosphere 
model and performance 
engineering ongoing

Ongoing work



Learn from cloud 
observations once 
reduced-order model 
is integrated in global 
climate model

NEXT STEP:



So far, this was about integrating the first part of 
the value chain. Large opportunities lie at the user-
facing end too.



Damages from climate-related disasters are already 
increasing (~$150B annually in the U.S. alone)

NOAA Climate.gov. Data: NCEI
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Adapting to what is coming has a large 
benefit-cost ratio

Global Commission on Adaptation, Adapt Now: A Global Call for Leadership on Climate Resilience, 2019

Strengthening early warning systems

Making new infrastructure resilient

Making water resources management 
more resilient

1:1 5:1 10:1

Benefit-cost ratio of adaptation measures



Adaptation requires risks of rare events on kilometer-
scales (or better)



Toby Bischoff, Katherine Deck, Andrew Stuart

Generative models for downscaling from coarse to 
fine resolution (with focus on rare-event statistics)

High-resolution for training Standard low resolution AI generated high resolution

512 times faster than direct 
high-resolution simulation



CliMA’s goal: accelerate climate science and 
become a hub for actionable climate information

Anchor ecosystem of apps for detailed predictions 
of flood risks, risks of extreme heat, crop yields, 
and other impacts

Provide actionable information to facilitate 
resiliency throughout public and private sectors

Down to kilometer-scale spatial resolution 

Extreme scenarios (e.g., heat waves, 
droughts) with associated probabilities

Fine-grained climate projections on 
demand:



Conclusions Reducing and quantifying uncertainties in 
climate models is urgent but within reach

To reduce and quantify uncertainties, combine 
process-informed models with ML approaches 
harnessing climate statistics

Treat ML as inverse problem, to be able to harness 
diverse, noisy, and multifidelity data

Sparsely parameterized, physics-based subgrid-
scale models can capture turbulence and cloud 
regimes that have vexed climate models for 
decades

Calibrate-emulate-sample forms the core of the 
data assimilation/machine learning layer and 
achieves up to 1,000x speed-up relative to 
traditional Bayesian learning methods

Many scientific and 
commercial opportunities 
for AI & computing 
(combined judiciously)!



With thanks to CliMA’s 
funders


