

DOE CSGF Review 2023 July 18th 2023

The foundation for a ground-up & robust approach to computational magnetic materials discovery

Presenter: Guy Moore

Mentor: Dr. Matthew Horton Mentor: Dr. Sinéad Griffin Practicum mentor: Dr. Tae Wook Heo Advisor & Mentor: Dr. Kristin Persson

Understanding magnetic properties essential for many applications

We address several limitations in computational predictions of magnetic properties

Challenges

- Noncollinear ground-state → Many properties
- Ground-state → high-dimensional optimization & computational cost
- Extensions to finite-temperature & microstructure effects?

Solutions

- Unified ground-up computational framework
- Robust computation of many magnetic properties from first principles

Outline of this talk: Multiscale magnetic framework

Part I: Linear response DFT+U+J & Source-free B_{xc}

Multiscale magnetic framework

Linear response U & J workflow (atomate)

Self-consistent

Spin-polarized linear response (Ni-d states in NiO)

Hubbard U and Hund J values

Preprint: *arXiv:2201.04213*

Source-free XC functional

Test case: Mn₃ZnN

Based on the theoretical work of Sharma et. al. (DOI: 10.1021/acs.jctc.7b01049)

Source-free GGA+*U*+*J*

Conventional GGA+U+J (SDFT)

Improved convergence using source-free functional 10⁴

Case study: YMnO₃

Part II: **SpinPSO** noncollinear ground-state optimization

SpinPSO Algorithm

Identifying noncollinear magnetic ground-states

Stochastic agent-based algorithm based on the combined dynamical frameworks of:

- Atomistic spin dynamics
- Particle swarm optimization (PSO)

Inspired by previous approaches NEB (Fidimag) and Firefly algo. (PyChemia)

Reduced-dimension potential energy landscape for FeF₃ spin orientation *Energies from PBE Visualized using t-distributed stochastic neighbor embedding* (t-SNE)

SpinPSO algorithm for noncollinear magnetic ground-states *Test case: MnPtGa*

Visualized using Crystal Toolkit

Part III: Spin-lattice Hamiltonians & Monte Carlo method to probe the thermodynamics

Multiscale magnetic framework

Using custom Cython Monte Carlo code MPI+OpenMP parallelized

Successful prediction of experimental transition temperatures

ΔS_M - a magnetocaloric figure of merit We can successfully predict experimentally resolved thermodynamic behavior

Material test case: $Mn_xCo_{1-x}Cr_2O_4$

Part IV: *Continuum description*

Multiscale magnetic framework

DOE CSGF Practicum at LLNL

Probing the kinetics and microstructure of diffusionless structural phase transitions using a custom Cython code

- Under the guidance of Dr. Tae Wook Heo
- Fully MPI parallelized

face-centered-cubic (FCC) to body-centered-cubic (BCC)

HCP to FCC

Each color represents a symmetrically distinct structural variant (deformation direction)

Phase field model with random grain structures

Trimerization OP

Polarization

Grain structure

Moving to the continuum picture

Lattice model

Gaussian integral "Hubbard Stratonovich" transformation

Ginzburg Landau functional

Gradient contributions: $|\nabla \mathbf{m}|^2$

7.5 $T \leq T_c$ Using a new time evolution equation for 5.0 2.5 micromagnetics E(m) 0.0 -2.5*Time evolution is not* -5.0-7.5 restricted to $|\mathbf{s}| = 1$ $\mathbf{h}_{\mathrm{eff}}$ $\delta \mathbf{s}$ -2 -1 2 0 **m** - order parameter 50· $d\mathbf{s}$ T > T40 \mathbf{S} dt30 E(m) dissipation 20 10 References: 0

- J. X. Zhang and L. Q. Chen, Acta Materialia, 2005.
- Additional works by L. Q. Chen et al. (and others)

2.0

-2.0 - 1.5 - 1.0 - 0.5 0.0 0.5 1.0 1.5

m - order parameter

Magnetocaloric cycling Test case: Ni₂MnGa

Conclusions & Future work

Predicting magnetic properties is challenging

- Magnetic ground-state \rightarrow many DOFs
- Important: response to applied magnetic field & stress at different temperatures
- Mesoscopic magnetic → full description & contribute to hysteresis fundamentally non-equilibrium

We address these challenges

- Essential to consider magnetic properties for real-world applications (e.g. magnetocalorics, spintronics, ... etc.)
- Combined & holistic approach + many levels of theory *is possible* \rightarrow Can be successfully applied to predict experimental properties
- Work is transferable to not just explicitly magnetic materials (e.g., predicting $U/J \rightarrow$ wide range of studies)
- We developed workflows to make this as easy as possible for others to adopt

Thankful of Mentors, Collaborators, and Fellowship

Advisor

Mentor

Professor Kristin Persson

Dr. Matt Horton

Dr. Sinéad Griffin

Isaac Craig

Dr. Dennis Meier

Dr. Jan Schultheiß

Dr. Tae Wook Heo

Dr. Edward Linscott

Professor Joya Cooley

Professor David O'Regan

And others....

