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Understanding magnetic properties - 
essential for many applications

We address several limitations in computational 
predictions of magnetic properties

Challenges
● Noncollinear ground-state → Many 

properties
● Ground-state → high-dimensional 

optimization & computational cost
● Extensions to finite-temperature & 

microstructure effects?

Solutions
● Unified ground-up computational 

framework  
● Robust computation of many magnetic 

properties from first principles

https://cdn.shopify.com/s/files/1/1942/1299/products/MICRO432_6_c9a2c55d-0096-424d-9b8a-4acb63e75164.jpg?v=1542413186
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https://aip.scitation.org/doi/10.1063/1.4921927
https://www.youtube.com/watch?v=5lVMstvAjgk
https://www.youtube.com/watch?v=5lVMstvAjgk


Outline of this talk: Multiscale magnetic framework
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Part I: 
Linear response DFT+U+J 

&
Source-free Bxc 
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Multiscale magnetic framework

MnPtGa
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Identifying exotic magnetic ground-states in a robust manner
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Linear response U & J workflow (atomate)

Hubbard U and Hund J values

6Preprint: arXiv:2201.04213

Includes >800 experimentally 
synthesizable materials

Spin-polarized linear response
(Ni-d states in NiO)



Source-free GGA+U+J Conventional GGA+U+J (SDFT)

Source-free XC functional
Test case: Mn3ZnN
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Based on the theoretical work of Sharma et. 
al. (DOI: 10.1021/acs.jctc.7b01049)

OpenACC + MPI 
parallelized 

&
Run on Perlmutter 

GPU nodes



Little/no change

Little/no change
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Improved convergence 
using source-free 
functional

Case study: YMnO3 



Part II: 
SpinPSO noncollinear ground-state 

optimization 
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SpinPSO Algorithm
Identifying noncollinear magnetic 
ground-states
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Stochastic agent-based algorithm based on the 
combined dynamical frameworks of:

● Atomistic spin dynamics
● Particle swarm optimization (PSO)

Inspired by previous approaches NEB (Fidimag) and 
Firefly algo. (PyChemia)

precession in-plane 
movement

Reduced-dimension 
potential energy landscape 
for FeF3 spin orientation
Energies from PBE 
Visualized using t-distributed 
stochastic neighbor embedding 
(t-SNE)

Global minimum

Local minimum

agent 
best

swarm 
best

local fields 
from constrained 

moment DFT



SpinPSO algorithm for noncollinear magnetic ground-states
Test case: MnPtGa
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MnPtGa

Visualized using Crystal Toolkit

Computed ground-state 
configuration using SpinPSO + 

GGASF+U+J



Part III: 
Spin-lattice Hamiltonians

&
Monte Carlo method to probe the 

thermodynamics
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MnPtGa

   

Multiscale magnetic framework
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Using custom Cython Monte Carlo code
MPI+OpenMP parallelized
Successful prediction of experimental transition temperatures
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Material test case: 
MnxCo1-xCr2O4



ΔSM - a magnetocaloric figure of merit
We can successfully predict experimentally resolved thermodynamic behavior
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Experimental results 
(Joya Cooley et al.)

Thermodynamic 
mean-field model

Happ = 5 Tesla

MnCr2O4

CoCr2O4

Material test case: MnxCo1-xCr2O4



Part IV: 
Continuum description
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Multiscale magnetic framework
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DOE CSGF Practicum at LLNL 
Probing the kinetics and microstructure of diffusionless structural 
phase transitions using a custom Cython code
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● Under the guidance of Dr. 
Tae Wook Heo

● Fully MPI parallelized

FCC to BCC HCP to FCC

Each color 
represents a 

symmetrically 
distinct structural 

variant 
(deformation 

direction)

Grain 
structure

face-centered-cubic (FCC) to 
body-centered-cubic (BCC)



Phase field model with random grain structures 
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PolarizationTrimerization OP

Grain structure

Sinéad Griffin et al. 
DOI:10.1103/PhysRevX.2.041022

σxx

σyy



Moving to the continuum picture
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m = -1 m = +1

Double-well 
potential “η”

Gradient 
contributions: 

Gaussian integral 
“Hubbard Stratonovich”

transformation 

Ginzburg Landau 
functional

Lattice model



Using a new time evolution equation for 
micromagnetics
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precession dissipation

Time evolution is not 
restricted to |s| = 1

References:
● J. X. Zhang and L. Q. Chen, Acta Materialia, 2005.
● Additional works by L. Q. Chen et al. (and others)

T < Tc

T > Tc



Magnetocaloric cycling
Test case: Ni2MnGa
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Conclusions & Future work
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Predicting magnetic properties is challenging
● Magnetic ground-state → many DOFs
● Important: response to applied magnetic field & stress 

at different temperatures 
● Mesoscopic magnetic → full description & contribute 

to hysteresis - fundamentally non-equilibrium

We address these challenges
● Essential to consider magnetic properties for real-world applications 

(e.g. magnetocalorics, spintronics, … etc.)
● Combined & holistic approach + many levels of theory is possible → 

Can be successfully applied to predict experimental properties
● Work is transferable to not just explicitly magnetic materials (e.g., 

predicting U / J → wide range of studies)
● We developed workflows to make this as easy as possible for others to 

adopt
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