What Do Ionic Liquids Have To Do With Linear Algebra?

Devin Matthews

Southern Methodist University

SMU

Motivation: Ionic Liquids

Motivation: Ionic Liquids

Both long-range and short-range dynamical order

Motivation: Ionic Liquids

Xiao et al. J. Phys. Chem. B 2008, 112, 42, 13316-13325

Motivation: Ionic Liquids

Electric fields in the range of 0.01-0.02 au $\approx 5-10 \mathrm{~V} / \mathrm{nm}$

Strong orientation and solvent caging effects

Soft X-ray Spectroscopy XPS

XAS/NEXAFS

Soft X-ray Spectroscopy

XES
RIXS

Ultrafast X-Ray Spectroscopy

DOF: 10.1038/s41467-017-00069-7 OPEN

Probing ultrafast $\pi \pi^{*} / n \pi^{*}$ internal conversion in organic chromophores via K-edge resonant absorption

Computational Methodology

- Orbital relaxation is a dominant effect: how to explicitly or implicitly handle this?
- How to recover electron correlation?
-What is the optimal basis set?
- How to study the effect of the environment?

Catherine Wright

Dr. Avdhoot Datar

Dr. Alexis Delgado

Duc Anh Lai

Dr. Megan Simons

Computational Methodology

Computational Methodology

Computational Methodology

Tensor Factorization

Density Functional and Density Matrix Method Scaling Linearly with the Number of Atoms
W. Kohn

Phys. Rev. Lett. 76, 3168 - Published 22 April 1996

I first discuss a widely applicable physical principle which explains why $O(N)$ methods can exist. I call this principle the nearsightedness of equilibrium systems consisting of many quantum mechanical particles moving in an external potential $v(r)$.

Tensor Factorization

Tensor Factorization

$\langle p q \mid r s\rangle \approx \sum_{J} B_{p r}^{J} B_{q s}^{J}$

Tensor Factorization

$=$ Density Fitting, Cholesky Decomposition, RI, etc.
Reduced storage, but NOT reduced cost!

Tensor Factorization

Tensor decomposition in post-Hartree-Fock methods. I. Two-electron integrals and MP2

Cite as: J. Chem. Phys. 134, 054118 (2011); https://doi.org/10.1063/1.3514201
Submitted: 02 August 2010 . Accepted: 19 October 2010 . Published Online: 07 February 2011

[^0]
Tensor Factorization

Communication: Acceleration of coupled cluster singles and dou-

 bles via orbital-weighted least-squares tensor hypercontractionJ. Chem. Phys. 140, 181102 (2014); https://doi.org/10.1063/1.4876016

Robert M. Parrish ${ }^{1}$, C. David Sherrill ${ }^{1}$, a), Edward C. Hohenstein ${ }^{2}$, Sara I. L. Kokkila ${ }^{2}$, and Todd J. Ma

Robust Approximation of Tensor Networks: Application to Grid-Free Tensor Factorization of the Coulomb Interaction
Karl Pierce, Varun Rishi, and Edward F. Valeev*

Cite this: J. Chem. Theory Comput. 2021, 17, 4,	Article Views	Altmetric	Citation
$\begin{array}{lll}2217-2230 \\ \text { Publication Date: } \text { March } 29,2021 \text { r } & 358 & 7\end{array}$	-		

https://doi.org/10.1021/acs.jct.0001310
Copyright © 2021 American Chemical Society
RIGHTS \& PERMISSIONS

Learn about these metrics

Tensor Factorization

$$
\langle p q \mid r s\rangle \approx \sum_{R S} X_{p}^{R} X_{r}^{R} V_{R S} X_{q}^{S} X_{S}^{S}
$$

Tensor hypercontraction density fitting. I. Quartic scaling second- and third-order Møller-Plesset perturbation theory

[^1]Edward G. Hohenstein ${ }^{1,2}$, Robert M. Parrish ${ }^{3}$, and Todd J. Martínez ${ }^{1,2}$

Tensor Factorization

A Grid!

Tensor hypercontraction. II. Least-squares renormalization

J. Chem. Phys. 137, 224106 (2012); https://doi.org/10.1063/1.4768233
Robert M. Parrish ${ }^{1}$, Edward G. Hohenstein ${ }^{2,3}$, Todd J. Martínez ${ }^{2,3, ~ a) ~, ~ a n d ~ C . ~ D a v i d ~ S h e r r i l l ~}{ }^{1,4, \text { b) }}$

Tensor Factorization

$$
\langle p q \mid r s\rangle \approx \sum_{R S} X_{p}^{R} X_{r}^{R} V_{R S} X_{q}^{S} X_{s}^{S}
$$

$$
X_{p}^{R}=\psi_{p}\left(x_{R}\right)
$$

$$
\begin{gathered}
\langle p q \mid r s\rangle=\iint \psi_{p}\left(r_{1}\right) \psi_{r}\left(r_{1}\right) \frac{1}{\left|r_{1}-r_{2}\right|} \psi_{q}\left(r_{2}\right) \psi_{s}\left(r_{2}\right) d r_{1} d r_{2} \\
\approx \sum_{R \neq S} X_{p}^{R} X_{r}^{R} \frac{w_{R} w_{S}}{\left|r_{R}-r_{S}\right|} X_{q}^{S} X_{S}^{S}+\text { "diagonal term" } \\
\approx \sum_{R S} X_{p}^{R} X_{r}^{R} V_{R S} X_{q}^{S} X_{S}^{S}
\end{gathered}
$$

Quite similar to DFT grids:

$$
\begin{gathered}
E_{x c}=\int f(\rho(r), \tau(r), \ldots) d r \\
\approx \sum_{R} f\left(\rho\left(x_{R}\right), \tau\left(x_{R}\right), \ldots\right) w_{R} \\
\rho\left(x_{R}\right)=\sum_{\mu \nu} X_{\mu}^{R} X_{v}^{R} P_{\mu \nu}
\end{gathered}
$$

Tensor Factorization

Communication: Tensor hypercontraction. III. Least-squares tensor hypercontraction for the determination of correlated wavefunctions

Edward G. Hohenstein, ${ }^{1,2}$ Robert M. Parrish, ${ }^{3}$ C. David Sherrill ${ }^{3}$ and Todd J. Martínez ${ }^{1,2}$ Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
Center for Computational Molecular Science and Tech and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta,
,
(Received 8 October 2012; accepted 5 November 2012; published online 11 December 2012)

A critical analysis of least-squares tensor hypercontraction applied to MP3

Systematically Improvable Tensor Hypercontraction: Interpolative Separable Density-Fitting for Molecules Applied to Exact Exchange, Second- and Third-Order Møller-Plesset Perturbation Theory

${ }^{\dagger}$ Department of Chemistry, University of California, Berkeley, California 94720, United States
${ }^{\text {* }}$ Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
${ }^{8}$ Department of Mathematics, University of California, Berkeley, California 94720, United States
"Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

Rank-reduced coupled-cluster. III. Tensor

 hypercontraction of the doubles amplitudes| Cite as: J. Chem. Phys. 154, 134102 (2021); doi: $10.1063 / 5.0038764$ |
| :--- |
| Submitted: 25 November 2020•Accepted: 17 March 2021• |
| Published Online: 1 April 2021 |
| Devin A. Matthews |

Tensor Factorization

Which Basis Functions?

Option 1:

$$
T_{2}=U \Sigma V^{T}
$$

$$
f=\left|U \Sigma V^{T} Q\right|_{F}^{2} /|\Sigma|_{F}^{2}
$$

$$
X_{a}^{R} X_{i}^{R}=Y_{a i}^{R}=Q R
$$

Option 2:

$$
\Delta E_{T H C}(y)=\left|E_{T H C}(Y \cup y)-E_{T H C}(Y)\right|
$$

Which Basis Functions?

$$
\begin{gathered}
E_{T H C}=\operatorname{Tr}\left[\tilde{V} T_{T H C}\right]=\operatorname{Tr}\left[\tilde{V} Y S^{-1} Y^{T} T Y S^{-1} Y^{T}\right] \\
\Delta E_{T H C}(y)=2 \mu^{-1} \operatorname{Tr}\left[\tilde{V} B B^{T} T Y S^{-1} Y^{T}\right] \\
+\mu^{-2} \operatorname{Tr}\left[\tilde{V} B B^{T} T B B^{T}\right] \\
B=\left(I-Y S^{-1} Y^{T}\right) y \\
\mu=y^{T}\left(I-Y S^{-1} Y^{T}\right) y
\end{gathered}
$$

Which Basis Functions?

Which Basis Functions?

HPC Implementation

HPC Implementation

HPC Implementation

HPC Implementation

HPC Implementation

HPC Implementation

$$
\begin{array}{r}
\alpha=\sum_{i j k} A_{i k} B_{k j} ? \quad C_{i j}=\sum_{k} A_{i k} B_{k j} x_{j} ? \\
C_{i j}=\sum_{k} A_{i k} x_{j+k} \quad D_{i j}=C_{i j} \sum_{k} A_{i k} B_{k j} ? \\
z_{i}=\sum_{j} \exp \left(x_{i}^{2}+y_{j}^{2}-2 \sum_{k} A_{i k} B_{k j}\right) \\
\alpha=\sum_{i j k} C_{i j} A_{i k} B_{k j} A_{j k} B_{k i} ?
\end{array}
$$

How BRA BLIS Works

BLAS-Like
 Library
 Instantiation
 Software

Field Van Zee

C

Variant 1 (m):

Variant 2 (n):

x

x

Variant	Name	Blocking factor(s):	Reuse data from:
(m)	IR loop	MR	L1 cache
3 (k)	Micro-kernel	1	Registers

Variant	Name	Blocking factor(s):	Reuse data from:
2 (n)	JR loop	NR	L2 cache
1 (m)	IR loop	MR	L1 cache
3 (k)	Micro-kernel	1	Registers

Variant	Name	Blocking factor(s):	Reuse data from:
1 (m)	IC loop	IC	L3 cache
Pack A	MR, KC		
2 (n)	JR loop	NR	L2 cache
1 (m)	IR loop	MR	L1 cache
3 (k)	Micro-kernel	1	Registers

Variant	Name	Blocking factor(s):	Reuse data from:
	Pack B	NR, KC	
1 (m)	IC loop	IC	L3 cache
Pack A	MR, KC		
(n)	JR loop	NR	L2 cache
1 (m)	IR loop	MR	L1 cache
3 (k)	Micro-kernel	1	Registers

Variant	Name	Blocking factor(s):	Reuse data from:
3 (k)	PC loop	KC	
	Pack B	NR, KC	
1 (m)	IC loop	IC	L3 cache
2 (n)	JR loop	NR	L2 cache
1 (m)	IR loop	MR	L1 cache
3 (k)	Micro-kernel	1	Registers

Variant	Name	Blocking factor(s):	Reuse data from:
$2(n)$	JC loop	NC	
3 (k)	PC loop	KC	
	Pack B	NR, KC	
$1(m)$	IC loop	IC	L3 cache
2 (n)	JR loop	NR	L2 cache
1 (m)	IR loop	MR	L1 cache
3 (k)	Micro-kernel	1 (KR)	Registers

But why limit ourselves?

people.smu.edu/dmatthews

CAREER CHE-2143725 OAC-2003931 CBET-2117574

N-2072-20210327

ECRP DE-SC0022893

BLIS is a Community Project

I'M HIRING POSTDOCS

[^0]: Udo Benedikt, Alexander A. Auer, Mike Espig, and Wolfgang Hackbusch

[^1]: J. Chem. Phys. 137, 044103 (2012); https://doi.org/10.1063/1.4732310

