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Deep neural network models predict neural
activity in visual brain regions
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How well does a model's image classification performance
predict its fit to neural data?
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How well does a model's image classification
performance predict its fit to neural data?
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How well does a model's image classification
performance predict its fit to neural data?
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Unsupervised auxiliary tasks

- BigBiGAN Self-Supervised contrastive / Supervised Classification

, , cluster learning - AlexNet
- Relative patch location - SimCLR - ResNet
- Rotation prediction - MOCO - VGG
- Cologléatlon -BYOL - Inception

- efc - efc



Goodness-of-neural fi

Trend holds across multiple datasets
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Moving beyond classification

What additional properties of a model make some better than
others at predicting activity in the primate visual system?




Conceptual gap between models & visual perception

)+ Most models optimize for classification of object
8 i ° identity, irrespective of pose & scene composition.

The brain supports a rich
understanding of many scene
propetrties.




Invariance to
non-class
factors

Factorization of
non-class factors
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Candidate property: factorization

Unfactorized
non-class factors

High subspace
invariance

-

Low subspace
invariance

Factorization measures the extent to which different parameters drive
overlapping vs. orthogonal variance in neural activity space



Metrics

var(P)

var(all)

Invariance: 1

var(P | subspace[O])
var(P)

Factorization: 1

Notation

- var(P) = “variance induced by parameter P (controlling all other parameters)”
- subspace(P) = “top principal components of variance induced by parameter P”
- var(P | S) ="var(P) when projected onto S"



Factorization increases across the visual stream
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Factorization is important for object decoding
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Synthetic data with reduced factorization but otherwise identical
statistics is much worse at supporting object decoding



Can’t do much more than this with existing neural data
No large-scale datasets of visual responses to parametrically varied scenes

Solution: large-scale analysis of deep neural network models



A synthetic stimulus set to independently control
scene variables

Foreground
object identity

Background identity

Lighting

Synthetic 3D foreground object
+
Background ImageNet image

Julodmalip



Strategy: what
model properties
are associated
with match to
neural data?

- Synthetic scenes

1) Compute scene encoding properties of model

- Factorization + invariance metrics

- Involves >1k PCA runs over >100k
dimensions

- Grayscale natural scenes
- Color natural scenes (ImageNet)

Model Library

Objectives: supervised, self-supervised
Architectures: Resnet-50, AlexNet,...

Model-layer metric
factorization
invariance
classification

Images Used in Experiments

Model-layer
brain predicitivity
V4

IT/HVC
behavior

1
\"

p(model metric,
brain predicitivity)

2) Assess how well models match neural data

- Fit linear regression from model neurons
to data neurons / voxels / behavior in
response to the same images

* Involves >1k ridge regressions over >100k
dimensions



Example: viewpoint factorization
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Shown here: last layer of each network
Take correlation values, average across datasets + layers
Repeat for other metrics



More brain-like models tend to factorize scene
variables
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Factorization computed from natural videos
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Macaque Human
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Factorization complementary to classification
performance as an indicator of brain-like models

V4 IT Behavior
Classification Viewpoint fact. Background fact. (+ class)

performance Object pose fact. (+ class) Lighting fact.



Follow-up directions

- Auxiliary objective functions to directly incentivize factorization
- Shown to improve out-of-distribution model performance
(Ying et al., 2023)

-+ Unsupervised discovery of parameters being factorized by a
given representation

- What is the biological substrate of parameter-driven subspaces?



Thank you!





