# Factorized visual representations in the primate visual system and deep neural networks

Jack Lindsey Columbia University

Work conducted with Elias Issa

# Deep neural network models predict neural activity in visual brain regions

Task-Optimized Model



Visual Cortex Data



How well does a model's image classification performance predict its fit to neural data?



# How well does a model's image classification performance predict its fit to neural data?



Architectures
ResNet-18,
ResNet-50,
ResNeXt,
VGG,
Inception...

# How well does a model's image classification performance predict its fit to neural data?



Unsupervised auxiliary tasks

- BigBiGAN
- Relative patch location
  - Rotation prediction
    - Colorization
      - etc

Self-Supervised contrastive / cluster learning

- SimCLR
  - MOCO
  - BYOL
    - etc

Supervised Classification

- AlexNet
- ResNet
  - VGG
- Inception
  - etc

### Trend holds across multiple datasets



### Moving beyond classification

What additional properties of a model *make some better than* others at predicting activity in the primate visual system?

### Conceptual gap between models & visual perception



Most *models optimize for classification of object identity, irrespective of* pose & scene composition.



The brain supports *a rich* understanding of many scene properties.

### Candidate property: factorization



Factorization measures the extent to which different parameters drive overlapping vs. orthogonal variance in neural activity space

### **Metrics**

Invariance: 
$$1 - \frac{\text{var}(P)}{\text{var}(\text{all})}$$

Factorization: 
$$1 - \frac{\text{var}(P \mid \text{subspace}[Q])}{\text{var}(P)}$$

#### **Notation**

- var(P) = "variance induced by parameter P (controlling all other parameters)"
- subspace(P) = "top principal components of variance induced by parameter P"
- var(P I S) = "var(P) when projected onto S"

### Factorization increases across the visual stream



### Factorization is important for object decoding



 Synthetic data with reduced factorization but otherwise identical statistics is much worse at supporting object decoding

| • | Can't do much more than this with existing neural data                      |
|---|-----------------------------------------------------------------------------|
| • | No large-scale datasets of visual responses to parametrically varied scenes |
| • | Solution: large-scale analysis of deep neural network models                |
|   |                                                                             |
|   |                                                                             |
|   |                                                                             |

# A synthetic stimulus set to independently control scene variables



















Synthetic 3D foreground object

Background ImageNet image

Strategy: what model properties are associated with match to neural data?



#### 1) Compute scene encoding properties of model

- Factorization + invariance metrics
- Involves >1k PCA runs over >100k dimensions

#### 2) Assess how well models match neural data

- Fit linear regression from model neurons to data neurons / voxels / behavior in response to the same images
- Involves >1k ridge regressions over >100k dimensions

#### **Example: viewpoint factorization**



- Shown here: last layer of each network
- Take correlation values, average across datasets + layers
- Repeat for other metrics

# More brain-like models tend to factorize scene variables



## Factorization computed from natural videos

Viewpoint



**Object motion** 



#### Macaque

### Human

Viewpoint (video)



Invariance





#### **Object pose (video)**





# Factorization complementary to classification performance as an indicator of brain-like models



### Follow-up directions

- Auxiliary objective functions to directly incentivize factorization
  - Shown to improve out-of-distribution model performance (Ying et al., 2023)
- Unsupervised discovery of parameters being factorized by a given representation
- What is the biological substrate of parameter-driven subspaces?

Thank you!