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Complex fluids balance liquid-like and solid-like behavior
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Rheologists seek to 
understand the 

relationship between 
stress and deformation 

in soft materials

This relationship is nonlinear and depends on the history of the deformation 
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Rheologists measure deformations in many ways

Simple shear

u(y, t)

·γ =
∂u
∂y

Shear rate:

Shear stress: σ

σ
Rheology: 


the study of flows
Purely viscous fluids: σ = η( ·γ) ·γ

But viscoelastic fluids have memory, and exhibit 
distinct behavior for different deformation histories  

· γ(
t)

t

· γ(
t)

t

· γ(
t)

t

Hodgkinson … Howse, J. Rheol. 66 (2022).Prabhu and Singh, J. Rheol. 66 (2022).
Flavio Di Dio … Bonnecaze, J. Rheol 66 (2022).

Data coming from different experiments often have very different structures
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Rheological constitutive equations help us make sense of diverse data

Transducer

·γ12(t)

σ12(t)

Constitutive equations for complex fluids relate deformations to stresses

In a simulation of a complex fluid, the constitutive equation imitates the fluid, not the instruments

·γ12(t)

σ12(t)

Post-
processing

U

Boundary conditions

or forcing functions 

σ(t) = F[ ·γ(t)]
Constitutive 

equation

σ12(t) = e1 ⋅ σ ⋅ e2

⋮ ⋮ ⋮ ⋮⋮

Current machine learning methods are “end-to-end”, mimicking both the instrumentation and fluid
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Constitutive equations for viscoelastic fluids should mimic the material and be independent 
of details regarding experimental instrumentation and measurement
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These “end-to-end” approaches …
… are fixed to a specific discretization 

… are one-dimensional (fixed to a specific input/observable) 
… can’t be used to simulate different flows  
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These “end-to-end” approaches …
… are fixed to a specific discretization 

… are one-dimensional (fixed to a specific input/observable) 
… can’t be used to simulate different flows  

ρ
Du
Dt

= − ∇p + ∇ ⋅ σ + f

⋮ ⋮ ⋮ ⋮⋮
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These “end-to-end” approaches …
… are fixed to a specific discretization 

… are one-dimensional (fixed to a specific input/observable) 
… can’t be used to simulate different flows  

ρ
Du
Dt

= − ∇p + ∇ ⋅ σ + f

⋮ ⋮ ⋮ ⋮⋮
Goal of this talk: Design machine leaning constitutive 
equations that are:


• continuous-time,

• three-dimensional,

• admissible (i.e. frame-invariant),

• and trainable via laboratory-accessible data



Constructing a machine learning constitutive equation from micromechanics
η0 G0 G0η0

σ = η0
·γv σ = G0γe

dσ
dt

= G0
·γe

·γ = ·γv + ·γe τ
dσ
dt

+ σ = η0
·γ

τ = η0/G0

1. The stress derivative must be frame-invariant

dσ
dt

→ ∇σ =
Dσ
Dt

+ v ⋅ ∇σ − σ ⋅ ∇v − (∇v)T ⋅ σ

Q ⋅
dσ
dt

⋅ QT ≠
d
dt (Q ⋅ σ ⋅ QT) Q = Q(t)if

τ
dσ
dt

+ σ + F(σ, ·γ) = η0
·γ σ = (

σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

) ·γ =

·γ11
·γ12

·γ13
·γ12

·γ22
·γ23

·γ13
·γ23

·γ33

= ∇u + (∇u)T

This is a three-dimensional (tensorial) model, but it is not frame-invariant

⋮ ⋮ ⋮ ⋮⋮σ
·γ

F

2. The neural network must be frame-invariant

This is a continuous-time nonlinear viscoelastic model, but it is one-dimensional 

A “learnable” Maxwell model: τ
dσ
dt

+ σ + F(σ, ·γ) = η0
·γ neural networkF =

Oldroyd, Proc. Royal Soc. A, 200 (1950)
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Embedding frame invariance within a neural network
 has an expansion in tensor products  of , , and 

, whose coefficients are arbitrary functions of the 
invariants of  (denoted as )

F(σ, ·γ) Tn
·γ σ

δ
Tn λn(1958)

Ling … Templeton, J. Fluid Mech., 807 (2016)

The “Rheological Universal Differential Equation” 
(RUDE): a learnable, frame-invariant constitutive model

τ ∇σ + σ +
9

∑
n=1

gn(λn; θ)Tn = η0
·γ

F = g1δ + g2
·γ + g3σ + g4(σ ⋅ σ) + g5( ·γ ⋅ ·γ) + g6(σ ⋅ ·γ) + …

T1 = δ T2 = ·γ T3 = σ T4 = σ ⋅ σ T6 = σ ⋅ ·γT5 = ·γ ⋅ ·γ gn = fn(λ1, λ2, …) λn = tr(Tn)

There are only nine independent  (Cayley-Hamilton)Tn

Tn =
δ ·γ σ σ ⋅ σ ·γ ⋅ ·γ ·γ ⋅ σ

·γ ⋅ σ ⋅ σ·γ ⋅ ·γ ⋅ σ ·γ ⋅ ·γ ⋅ σ ⋅ σ
, , , , ,

, ,{
There are only nine independent λn

λ =
tr(σ) tr(σ ⋅ σ) tr( ·γ ⋅ ·γ)
tr(σ ⋅ σ ⋅ σ)

tr( ·γ ⋅ σ)
tr( ·γ ⋅ ·γ ⋅ ·γ) tr( ·γ ⋅ ·γ ⋅ σ)

tr( ·γ ⋅ σ ⋅ σ) tr( ·γ ⋅ ·γ ⋅ σ ⋅ σ)

, , ,

, ,

,
{

⋮ ⋮ ⋮ ⋮⋮

Tn

gn F
F = ∑

n

gnTn

λn

“Tensor Basis Neural Network” (TBNN)
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Tn

gn F

τ ∇σ + σ +
9

∑
n=1

gn(λn; θ)Tn = η0
·γ

 and  are symmetric tensors, so there are 12 independent quantities and 6 coupled differential equationsσ ·γ
Homogeneous simple shear:  for , and specify either  or ·γij = 0 (i, j) ≠ (1,2) ·γ12(t) σ12(t)

λn

The loss function specializes on the data

7

·γ12(t) ̂σ12(t)

ℒσ,LAOS =
N

∑
i=1

( ̂σ12(ti) − σ(i)
12)2

(Predicted)

σ12

(Data)

K. Lennon, G.H. McKinley, J. Swan. PNAS (2023).
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̂σ12(t)

ℒσ,jump =
N

∑
i=1

( ̂σ12(ti) − σ(i)
12)2

(Predicted)

σ12

(Data)

K. Lennon, G.H. McKinley, J. Swan. PNAS (2023).
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Tn

gn F

τ ∇σ + σ +
9

∑
n=1

gn(λn; θ)Tn = η0
·γ

·γ12(t)

 and  are symmetric tensors, so there are 12 independent quantities and 6 coupled differential equationsσ ·γ
Homogeneous simple shear:  for , and specify either  or ·γij = 0 (i, j) ≠ (1,2) ·γ12(t) σ12(t)

ℒ = ℒσ,LAOS + ℒσ,jump

λn

Boundary conditions 
or forcing function RUDE Postprocessing 

& loss function

The loss function “measures” the simulated RUDE for comparison against the training data

Transducer

·γ12(t)

σ12(t)

The loss function specializes on the data

K. Lennon, G.H. McKinley, J. Swan. PNAS (2023).
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t

σ12

De ∈ {0.33, 0.5, 1, 2} Wi ∈ {1, 2}

Training a RUDE on synthetic data using Julia

·γ(t) = Wi sin(De ⋅ t)

t/τ1

σ 1
2/

G
0

De = 0.75
Wi = 2

t/τ1

De = 1
Wi = 2

t/τ1

Giesekus

Wi = 1.5
Startup

Test tasks:

(σ
11

−
σ 2

2)
/G

0

σ 1
2/

G
0

Predict  at a new σ12 De Predict normal stresses Predict startup transient

Example: train a RUDE using synthetic data (Giesekus model) 

τ ∇σ + σ +
τα
η0

σ ⋅ σ = η0
·γ α = 0.8

Training data: the shear stress ( ) in eight oscillatory testsσ12

(DifferentialEquations.jl) (Flux.jl)

8
Rackauckas … Edelman, arXiv:2001.04385 (2020)



Untrained RUDE
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Trained RUDE
Untrained RUDE
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The trained model reproduces the ground truth for protocols + observables not in the training set



Trained RUDEs can make predictions in complicated flows
RUDEs are continuous-time tensorial models, so they are compatible with existing computational fluid 

dynamics tools that numerically solve the Cauchy momentum equation

ρ
Du
Dt

= − ∇p + ∇ ⋅ σ + f

OpenFOAM with the RheoTool extension is a high-performance tool for simulating complex fluids 
with differential constitutive equations for the stress tensor

Re = ρUL /η0 = 0.1 Wi = τU/L = 1

u = Uex

x
L

= − 100
8L 2L

x = 0
Weller … Fureby, Comput. Phys., 12 (1998) Pimenta and Alves, JNNFM, 239 (2017)

τ ∇σ + σ +
9

∑
n=1

gn(λn; θ)Tn = η0
·γ
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Trained RUDE
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