# Scientific Machine Learning for Modeling and Simulating Complex Fluids







#### Kyle R. Lennon





#### Complex fluids balance liquid-like and solid-like behavior





www.BlushvDarlingcom





Rheologists seek to understand the relationship between **stress** and **deformation** in soft materials

#### This relationship is **nonlinear**











#### and depends on the **history** of the deformation







#### Rheologists measure deformations in many ways



#### Data coming from different experiments often have very different structures



Purely viscous fluids:  $\sigma = \eta(\dot{\gamma})\dot{\gamma}$ 

But viscoelastic fluids have **memory**, and exhibit distinct behavior for different **deformation histories** 





#### Rheological constitutive equations help us make sense of diverse data

Constitutive equations for viscoelastic fluids should mimic the material and be independent of details regarding experimental instrumentation and measurement











#### Rheological constitutive equations help us make sense of diverse data

Constitutive equations for viscoelastic fluids should mimic the material and be independent of details regarding experimental instrumentation and measurement













#### Rheological constitutive equations help us make sense of diverse data



Current machine learning methods are "end-to-end", mimicking both the instrumentation and fluid

These "end-to-end" approaches ... ... are fixed to a specific discretization ... are one-dimensional (fixed to a specific input/observable) ... can't be used to simulate different flows



$$\rho \frac{Du}{Dt} = -\nabla p + \nabla \cdot \boldsymbol{\sigma} + \boldsymbol{f}$$





# equations that are:

- continuous-time,
- three-dimensional,
- admissible (i.e. frame-invariant),

Goal of this talk: Design machine leaning constitutive

and trainable via laboratory-accessible data





#### Constructing a machine learning constitutive equation from micromechanics



This is a **continuous-time** nonlinear viscoelastic model, but it is **one-dimensional** 

$$\tau \frac{d\boldsymbol{\sigma}}{dt} + \boldsymbol{\sigma} + \boldsymbol{F}(\boldsymbol{\sigma}, \dot{\boldsymbol{\gamma}}) = \eta_0 \dot{\boldsymbol{\gamma}} \qquad \boldsymbol{\sigma} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_{22} & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} \end{pmatrix} \qquad \dot{\boldsymbol{\gamma}} = \begin{pmatrix} \dot{\gamma}_{11} & \dot{\gamma}_{12} & \dot{\gamma}_{13} \\ \dot{\gamma}_{12} & \dot{\gamma}_{22} & \dot{\gamma}_{23} \\ \dot{\gamma}_{13} & \dot{\gamma}_{23} & \dot{\gamma}_{33} \end{pmatrix} = \nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^T$$

This is a **three-dimensional (tensorial)** model, but it is not **frame-invariant** 

**1.** The stress derivative must be frame-invariant

$$Q \cdot \frac{d\boldsymbol{\sigma}}{dt} \cdot Q^T \neq \frac{d}{dt} \left( Q \cdot \boldsymbol{\sigma} \cdot Q^T \right) \quad \text{if} \quad Q = Q(t)$$
$$\frac{d\boldsymbol{\sigma}}{dt} \rightarrow \overset{\nabla}{\boldsymbol{\sigma}} = \frac{D\boldsymbol{\sigma}}{Dt} + \mathbf{v} \cdot \nabla \boldsymbol{\sigma} - \boldsymbol{\sigma} \cdot \nabla \mathbf{v} - (\nabla \mathbf{v})^T \cdot \boldsymbol{\sigma}$$

Oldroyd, Proc. Royal Soc. A, 200 (1950)

A "learnable" Maxwell model:  $\tau \frac{d\sigma}{dt} + \sigma + F(\sigma, \dot{\gamma}) = \eta_0 \dot{\gamma}$  F = neural network

#### 2. The neural network must be frame-invariant





#### Embedding frame invariance within a neural network

The Theory of Matrix Polynomials and its Application to the Mechanics of Isotropic Continua

A. J. M. Spencer & R. S. Rivlin (1958)

$$\boldsymbol{F} = g_1 \boldsymbol{\delta} + g_2 \dot{\boldsymbol{\gamma}} + g_3 \boldsymbol{\sigma} + g_4 (\boldsymbol{\sigma})$$

$$T_1 = \delta$$
  $T_2 = \dot{\gamma}$   $T_3 = \sigma$   $T_4 = \sigma \cdot \sigma$   $T_4 = \sigma \cdot \sigma$ 

There are only nine independent  $T_n$  (Cayley-Hamilton)

$$T_{n} = \begin{cases} \delta , \dot{\gamma} , \sigma , \sigma \cdot \sigma , \dot{\gamma} \cdot \dot{\gamma} , \dot{\gamma} \cdot \sigma \\ \dot{\gamma} \cdot \dot{\gamma} \cdot \sigma , \dot{\gamma} \cdot \sigma \cdot \sigma , \dot{\gamma} \cdot \dot{\gamma} \cdot \sigma \cdot \sigma \end{cases}$$

There are only nine independent  $\lambda_n$ 

$$\lambda = \begin{cases} \operatorname{tr}(\boldsymbol{\sigma}) , \operatorname{tr}(\boldsymbol{\sigma} \cdot \boldsymbol{\sigma}) , \operatorname{tr}(\dot{\boldsymbol{\gamma}} \cdot \dot{\boldsymbol{\gamma}}) , \operatorname{tr}(\dot{\boldsymbol{\gamma}} \cdot \boldsymbol{\sigma}) \\ \operatorname{tr}(\boldsymbol{\sigma} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{\sigma}) , \operatorname{tr}(\dot{\boldsymbol{\gamma}} \cdot \dot{\boldsymbol{\gamma}} \cdot \dot{\boldsymbol{\gamma}}) , \operatorname{tr}(\dot{\boldsymbol{\gamma}} \cdot \dot{\boldsymbol{\gamma}} \cdot \boldsymbol{\sigma}) \\ \operatorname{tr}(\dot{\boldsymbol{\gamma}} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{\sigma}) , \operatorname{tr}(\dot{\boldsymbol{\gamma}} \cdot \dot{\boldsymbol{\gamma}} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{\sigma}) \end{cases}$$

The "Rheological Universal Differential Equation" (RUDE): a learnable, **frame-invariant** constitutive model

Ling ... Templeton, J. Fluid Mech., 807 (2016)

 $F(\sigma, \dot{\gamma})$  has an expansion in tensor products  $T_n$  of  $\dot{\gamma}, \sigma$ , and  $\delta$ , whose coefficients are arbitrary functions of the invariants of  $T_n$  (denoted as  $\lambda_n$ )

 $(\boldsymbol{\sigma} \cdot \boldsymbol{\sigma}) + g_5(\boldsymbol{\dot{\gamma}} \cdot \boldsymbol{\dot{\gamma}}) + g_6(\boldsymbol{\sigma} \cdot \boldsymbol{\dot{\gamma}}) + \dots$ 

 $T_5 = \dot{\gamma} \cdot \dot{\gamma}$   $T_6 = \boldsymbol{\sigma} \cdot \dot{\boldsymbol{\gamma}}$   $g_n = f_n(\lambda_1, \lambda_2, ...)$   $\lambda_n = \operatorname{tr}(T_n)$ 

σ



**σ**)

$$\tau \overset{\nabla}{\boldsymbol{\sigma}} + \boldsymbol{\sigma} + \sum_{n=1}^{9} g_n(\lambda_n; \theta) \boldsymbol{T}_n = \eta_0 \dot{\boldsymbol{\gamma}}$$



## The loss function specializes on the data



K. Lennon, G.H. McKinley, J. Swan. PNAS (2023).

 $\sigma$  and  $\dot{\gamma}$  are symmetric tensors, so there are 12 independent quantities and 6 coupled differential equations Homogeneous simple shear:  $\dot{\gamma}_{ij} = 0$  for  $(i, j) \neq (1, 2)$ , and specify either  $\dot{\gamma}_{12}(t)$  or  $\sigma_{12}(t)$ 



## The loss function specializes on the data



K. Lennon, G.H. McKinley, J. Swan. PNAS (2023).

 $\sigma$  and  $\dot{\gamma}$  are symmetric tensors, so there are 12 independent quantities and 6 coupled differential equations Homogeneous simple shear:  $\dot{\gamma}_{ij} = 0$  for  $(i, j) \neq (1, 2)$ , and specify either  $\dot{\gamma}_{12}(t)$  or  $\sigma_{12}(t)$ 



# The loss function specializes on the data



K. Lennon, G.H. McKinley, J. Swan. PNAS (2023).

 $\sigma$  and  $\dot{\gamma}$  are symmetric tensors, so there are 12 independent quantities and 6 coupled differential equations Homogeneous simple shear:  $\dot{\gamma}_{ij} = 0$  for  $(i, j) \neq (1, 2)$ , and specify either  $\dot{\gamma}_{12}(t)$  or  $\sigma_{12}(t)$ 



## Training a RUDE on synthetic data using Julia

**Example:** train a RUDE using synthetic data (Giesekus model)

$$\tau \, \overset{\nabla}{\boldsymbol{\sigma}} + \boldsymbol{\sigma} + \frac{\tau \alpha}{\eta_0} \boldsymbol{\sigma} \cdot \boldsymbol{\sigma} = \eta_0 \, \dot{\boldsymbol{\gamma}} \qquad \alpha = 0.8$$

**Training data:** the shear stress ( $\sigma_{12}$ ) in eight oscillatory tests





(DifferentialEquations.jl)

**Test tasks:** 







Rackauckas ... Edelman, *arXiv:2001.04385* (2020)



(Flux.jl)



Predict normal stresses

Predict startup transient





## Training a RUDE on synthetic data using Julia

**Example:** train a RUDE using synthetic data (Giesekus model)

$$\tau \, \overset{\nabla}{\boldsymbol{\sigma}} + \boldsymbol{\sigma} + \frac{\tau \alpha}{\eta_0} \boldsymbol{\sigma} \cdot \boldsymbol{\sigma} = \eta_0 \, \dot{\boldsymbol{\gamma}} \qquad \alpha = 0.8$$

**Training data:** the shear stress ( $\sigma_{12}$ ) in eight oscillatory tests





(DifferentialEquations.jl)

**Test tasks:** 





Rackauckas ... Edelman, arXiv:2001.04385 (2020)



(Flux.jl)



Predict normal stresses

Predict startup transient





## Training a RUDE on synthetic data using Julia

**Example:** train a RUDE using synthetic data (Giesekus model)

$$\tau \, \overset{\nabla}{\boldsymbol{\sigma}} + \boldsymbol{\sigma} + \frac{\tau \alpha}{\eta_0} \boldsymbol{\sigma} \cdot \boldsymbol{\sigma} = \eta_0 \, \dot{\boldsymbol{\gamma}} \qquad \alpha = 0.8$$

**Training data:** the shear stress ( $\sigma_{12}$ ) in eight oscillatory tests





(DifferentialEquations.jl)

**Test tasks:** 



Rackauckas ... Edelman, *arXiv:2001.04385* (2020)



(Flux.jl)



Predict normal stresses

10 12  $t/\tau_1$ 

Predict startup transient



The trained model reproduces the ground truth for protocols + observables not in the training set



RUDEs are continuous-time tensorial models, so they are compatible with existing computational fluid dynamics tools that numerically solve the Cauchy momentum equation



OpenFOAM with the RheoTool extension is a high-performance tool for simulating complex fluids with differential constitutive equations for the stress tensor

$$o\frac{D\boldsymbol{u}}{D\boldsymbol{t}} = -\nabla \boldsymbol{p} + \nabla \cdot \boldsymbol{\sigma} + \boldsymbol{f}$$



Weller ... Fureby, Comput. Phys., 12 (1998)

Pimenta and Alves, JNNFM, 239 (2017)

$$\tau \overset{\nabla}{\boldsymbol{\sigma}} + \boldsymbol{\sigma} + \sum_{n=1}^{9} g_n(\lambda_n; \theta) \boldsymbol{T}_n = \eta_0 \dot{\boldsymbol{\gamma}}$$



RUDEs are continuous-time tensorial models, so they are compatible with existing computational fluid dynamics tools that numerically solve the Cauchy momentum equation



OpenFOAM with the RheoTool extension is a high-performance tool for simulating complex fluids with differential constitutive equations for the stress tensor

$$o\frac{D\boldsymbol{u}}{D\boldsymbol{t}} = -\nabla \boldsymbol{p} + \nabla \cdot \boldsymbol{\sigma} + \boldsymbol{f}$$







RUDEs are continuous-time tensorial models, so they are compatible with existing computational fluid dynamics tools that numerically solve the Cauchy momentum equation



OpenFOAM with the RheoTool extension is a high-performance tool for simulating complex fluids with differential constitutive equations for the stress tensor

$$o \frac{Du}{Dt} = -\nabla p + \nabla \cdot \boldsymbol{\sigma} + \boldsymbol{f}$$



Weller ... Fureby, Comput. Phys., 12 (1998)

Pimenta and Alves, JNNFM, 239 (2017)





RUDEs are continuous-time tensorial models, so they are compatible with existing computational fluid dynamics tools that numerically solve the Cauchy momentum equation



OpenFOAM with the RheoTool extension is a high-performance tool for simulating complex fluids with differential constitutive equations for the stress tensor

$$o \frac{Du}{Dt} = -\nabla p + \nabla \cdot \boldsymbol{\sigma} + \boldsymbol{f}$$



Weller ... Fureby, Comput. Phys., 12 (1998)

Pimenta and Alves, JNNFM, 239 (2017)





# THANK YOU!!!!

# DOE CSGF

