Scientific Machine Learning for Modeling and Simulating Complex Fluids

Kyle R. Lennon

Complex fluids balance liquid-like and solid-like behavior

Rheologists seek to understand the relationship between stress and deformation in soft materials

This relationship is nonlinear

and depends on the history of the deformation

Rheologists measure deformations in many ways

Purely viscous fluids:

$$
\sigma=\eta(\dot{\gamma}) \dot{\gamma}
$$

But viscoelastic fluids have memory, and exhibit distinct behavior for different deformation histories

Data coming from different experiments often have very different structures

Rheological constitutive equations help us make sense of diverse data

Constitutive equations for viscoelastic fluids should mimic the material and be independent of details regarding experimental instrumentation and measurement

Constitutive equations for complex fluids relate deformations to stresses

In a simulation of a complex fluid, the constitutive equation imitates the fluid, not the instruments

Current machine learning methods are "end-to-end", mimicking both the instrumentation and fluid

Rheological constitutive equations help us make sense of diverse data

Constitutive equations for viscoelastic fluids should mimic the material and be independent of details regarding experimental instrumentation and measurement

Constitutive equations for complex fluids relate deformations to stresses

In a simulation of a complex fluid, the constitutive equation imitates the fluid, not the instruments

Current machine learning methods are "end-to-end", mimicking both the instrumentation and fluid

These "end-to-end" approaches ...

... are fixed to a specific discretization
... are one-dimensional (fixed to a specific input/observable)
... can't be used to simulate different flows

Rheological constitutive equations help us make sense of diverse data

Current machine learning methods are "end-to-end", mimicking both the instrumentation and fluid

These "end-to-end" approaches ...
... are fixed to a specific discretization
... are one-dimensional (fixed to a specific input/observable)
... can't be used to simulate different flows

Goal of this talk: Design machine leaning constitutive equations that are:

- continuous-time,
- three-dimensional,
- admissible (i.e. frame-invariant),
- and trainable via laboratory-accessible data

Constructing a machine learning constitutive equation from micromechanics

A "learnable" Maxwell model: $\quad \tau \frac{d \sigma}{d t}+\sigma+F(\sigma, \dot{\gamma})=\eta_{0} \dot{\gamma} \quad F=$ neural network
This is a continuous-time nonlinear viscoelastic model, but it is one-dimensional

$$
\tau \frac{d \boldsymbol{\sigma}}{d t}+\boldsymbol{\sigma}+\boldsymbol{F}(\boldsymbol{\sigma}, \dot{\gamma})=\eta_{0} \dot{\gamma} \quad \boldsymbol{\sigma}=\left(\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{12} & \sigma_{22} & \sigma_{23} \\
\sigma_{13} & \sigma_{23} & \sigma_{33}
\end{array}\right) \quad \quad \dot{\gamma}=\left(\begin{array}{lll}
\dot{\gamma}_{11} & \dot{\gamma}_{12} & \dot{\gamma}_{13} \\
\dot{\gamma}_{12} & \dot{\gamma}_{22} & \dot{\gamma}_{23} \\
\dot{\gamma}_{13} & \dot{\gamma}_{23} & \dot{\gamma}_{33}
\end{array}\right)=\nabla \boldsymbol{u}+(\nabla \boldsymbol{u})^{T}
$$

This is a three-dimensional (tensorial) model, but it is not frame-invariant

1. The stress derivative must be frame-invariant

$$
\begin{gathered}
\boldsymbol{Q} \cdot \frac{d \boldsymbol{\sigma}}{d t} \cdot \boldsymbol{Q}^{T} \neq \frac{d}{d t}\left(\boldsymbol{Q} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{Q}^{T}\right) \quad \text { if } \quad \boldsymbol{Q}=\boldsymbol{Q}(t) \\
\frac{d \boldsymbol{\sigma}}{d t} \rightarrow \stackrel{\nabla}{\boldsymbol{\sigma}}=\frac{D \boldsymbol{\sigma}}{D t}+\mathbf{v} \cdot \nabla \boldsymbol{\sigma}-\boldsymbol{\sigma} \cdot \nabla \mathbf{v}-(\nabla \mathbf{v})^{T} \cdot \boldsymbol{\sigma}
\end{gathered}
$$

2. The neural network must be frame-invariant

Embedding frame invariance within a neural network

The Theory of Matrix Polynomials and its Application
to the Mechanics of Isotropic Continua
A. J. M. Spencer \& R. S. Rivlin (1958)
$\boldsymbol{F}(\boldsymbol{\sigma}, \dot{\boldsymbol{\gamma}})$ has an expansion in tensor products \boldsymbol{T}_{n} of $\dot{\gamma}, \boldsymbol{\sigma}$, and
$\boldsymbol{\delta}$, whose coefficients are arbitrary functions of the
invariants of \boldsymbol{T}_{n} (denoted as λ_{n})

$$
\boldsymbol{F}=g_{1} \boldsymbol{\delta}+g_{2} \dot{\boldsymbol{\gamma}}+g_{3} \boldsymbol{\sigma}+g_{4}(\boldsymbol{\sigma} \cdot \boldsymbol{\sigma})+g_{5}(\dot{\boldsymbol{\gamma}} \cdot \dot{\boldsymbol{\gamma}})+g_{6}(\boldsymbol{\sigma} \cdot \dot{\boldsymbol{\gamma}})+\ldots
$$

$$
\boldsymbol{T}_{1}=\boldsymbol{\delta} \quad \boldsymbol{T}_{2}=\dot{\boldsymbol{\gamma}} \quad \boldsymbol{T}_{3}=\boldsymbol{\sigma} \quad \boldsymbol{T}_{4}=\boldsymbol{\sigma} \cdot \boldsymbol{\sigma} \quad \boldsymbol{T}_{5}=\dot{\boldsymbol{\gamma}} \cdot \dot{\boldsymbol{\gamma}} \quad \boldsymbol{T}_{6}=\boldsymbol{\sigma} \cdot \dot{\boldsymbol{\gamma}} \quad g_{n}=f_{n}\left(\lambda_{1}, \lambda_{2}, \ldots\right) \quad \lambda_{n}=\operatorname{tr}\left(\boldsymbol{T}_{n}\right)
$$

There are only nine independent T_{n} (Cayley-Hamilton)

$$
T_{n}=\left\{\begin{array}{l}
\boldsymbol{\delta}, \dot{\gamma}, \sigma, \sigma \cdot \sigma, \dot{\gamma} \cdot \dot{\gamma}, \dot{\gamma} \cdot \sigma \\
\dot{\gamma} \cdot \dot{\gamma} \cdot \boldsymbol{\sigma}, \dot{\gamma} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{\sigma}, \dot{\gamma} \cdot \dot{\gamma} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{\sigma}
\end{array}\right.
$$

There are only nine independent λ_{n}

$$
\lambda=\left\{\begin{array}{l}
\operatorname{tr}(\boldsymbol{\sigma}), \operatorname{tr}(\boldsymbol{\sigma} \cdot \boldsymbol{\sigma}), \operatorname{tr}(\dot{\boldsymbol{\gamma}} \cdot \dot{\gamma}), \operatorname{tr}(\dot{\gamma} \cdot \boldsymbol{\sigma}) \\
\operatorname{tr}(\boldsymbol{\sigma} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{\sigma}), \operatorname{tr}(\dot{\gamma} \cdot \dot{\gamma} \cdot \dot{\gamma}), \operatorname{tr}(\dot{\gamma} \cdot \dot{\boldsymbol{\gamma}} \cdot \boldsymbol{\sigma}) \\
\operatorname{tr}(\dot{\boldsymbol{\gamma}} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{\sigma}), \operatorname{tr}(\dot{\boldsymbol{\gamma}} \cdot \dot{\boldsymbol{\gamma}} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{\sigma})
\end{array}\right.
$$

"Tensor Basis Neural Network" (TBNN)

The "Rheological Universal Differential Equation" (RUDE): a learnable, frame-invariant constitutive model

$$
\tau \stackrel{\nabla}{\boldsymbol{\sigma}}+\boldsymbol{\sigma}+\sum_{n=1}^{9} g_{n}\left(\lambda_{n} ; \theta\right) \boldsymbol{T}_{n}=\eta_{0} \dot{\gamma}
$$

The loss function specializes on the data

$\boldsymbol{\sigma}$ and $\dot{\gamma}$ are symmetric tensors, so there are 12 independent quantities and 6 coupled differential equations
Homogeneous simple shear: $\dot{\gamma}_{i j}=0$ for $(i, j) \neq(1,2)$, and specify either $\dot{\gamma}_{12}(t)$ or $\sigma_{12}(t)$

The loss function specializes on the data

$\boldsymbol{\sigma}$ and $\dot{\gamma}$ are symmetric tensors, so there are 12 independent quantities and 6 coupled differential equations Homogeneous simple shear: $\dot{\gamma}_{i j}=0$ for $(i, j) \neq(1,2)$, and specify either $\dot{\gamma}_{12}(t)$ or $\sigma_{12}(t)$
$\dot{\gamma}_{12}(t)$

The loss function specializes on the data

$\boldsymbol{\sigma}$ and $\dot{\gamma}$ are symmetric tensors, so there are 12 independent quantities and 6 coupled differential equations
Homogeneous simple shear: $\dot{\gamma}_{i j}=0$ for $(i, j) \neq(1,2)$, and specify either $\dot{\gamma}_{12}(t)$ or $\sigma_{12}(t)$

The loss function "measures" the simulated RUDE for comparison against the training data

Training a RUDE on synthetic data using Julia

Example: train a RUDE using synthetic data (Giesekus model)

$$
\tau \stackrel{\nabla}{\boldsymbol{\sigma}}+\boldsymbol{\sigma}+\frac{\tau \alpha}{\eta_{0}} \boldsymbol{\sigma} \cdot \boldsymbol{\sigma}=\eta_{0} \dot{\boldsymbol{\gamma}} \quad \alpha=0.8
$$

Training data: the shear stress $\left(\sigma_{12}\right)$ in eight oscillatory tests

$\dot{\gamma}(t)=\mathrm{Wi} \sin (\mathrm{De} \cdot t)$ $\operatorname{De} \in\{0.33,0.5,1,2\} \quad W i \in\{1,2\}$

Test tasks:

Predict σ_{12} at a new De

Predict normal stresses

Predict startup transient

Training a RUDE on synthetic data using Julia

Example: train a RUDE using synthetic data (Giesekus model)

$$
\tau \boldsymbol{\sigma}+\boldsymbol{\sigma}+\frac{\tau \alpha}{\eta_{0}} \boldsymbol{\sigma} \cdot \boldsymbol{\sigma}=\eta_{0} \dot{\gamma} \quad \alpha=0.8
$$

Training data: the shear stress $\left(\sigma_{12}\right)$ in eight oscillatory tests

$\dot{\gamma}(t)=\mathrm{Wi} \sin (\mathrm{De} \cdot t)$ $\operatorname{De} \in\{0.33,0.5,1,2\} \quad W i \in\{1,2\}$

Test tasks:

Predict σ_{12} at a new De

Predict normal stresses

Predict startup transient

Training a RUDE on synthetic data using Julia

Example: train a RUDE using synthetic data (Giesekus model)

$$
\tau \stackrel{\nabla}{\boldsymbol{\sigma}}+\boldsymbol{\sigma}+\frac{\tau \alpha}{\eta_{0}} \boldsymbol{\sigma} \cdot \boldsymbol{\sigma}=\eta_{0} \dot{\gamma} \quad \alpha=0.8
$$

Training data: the shear stress $\left(\sigma_{12}\right)$ in eight oscillatory tests

(DifferentialEquations.jl)

(Flux.jl)

$\dot{\gamma}(t)=\mathrm{Wi} \sin (\mathrm{De} \cdot t)$ $\operatorname{De} \in\{0.33,0.5,1,2\} \quad W i \in\{1,2\}$

Test tasks:

The trained model reproduces the ground truth for protocols + observables not in the training set

Trained RUDEs can make predictions in complicated flows

RUDEs are continuous-time tensorial models, so they are compatible with existing computational fluid dynamics tools that numerically solve the Cauchy momentum equation

Open ∇ FOAM ${ }^{\circledR}$
 (1) RheoTol

OpenFOAM with the RheoTool extension is a high-performance tool for simulating complex fluids with differential constitutive equations for the stress tensor

$$
\rho \frac{D \boldsymbol{u}}{D t}=-\nabla p+\nabla \cdot \boldsymbol{\sigma}+\boldsymbol{f} \quad \tau \boldsymbol{\sigma} \boldsymbol{\sigma}+\boldsymbol{\sigma}+\sum_{n=1}^{9} g_{n}\left(\lambda_{n} ; \theta\right) \boldsymbol{T}_{n}=\eta_{0} \dot{\boldsymbol{\gamma}}
$$

Trained RUDEs can make predictions in complicated flows

RUDEs are continuous-time tensorial models, so they are compatible with existing computational fluid dynamics tools that numerically solve the Cauchy momentum equation

Open ∇ FOAM ${ }^{\circledR}$
 (1) RheoTal

OpenFOAM with the RheoTool extension is a high-performance tool for simulating complex fluids with differential constitutive equations for the stress tensor

$$
\rho \frac{D \boldsymbol{u}}{D t}=-\nabla p+\nabla \cdot \boldsymbol{\sigma}+\boldsymbol{f} \quad \tau \boldsymbol{\nabla} \boldsymbol{\sigma}+\boldsymbol{\sigma}+\sum_{n=1}^{9} g_{n}\left(\lambda_{n} ; \theta\right) \boldsymbol{T}_{n}=\eta_{0} \dot{\boldsymbol{\gamma}}
$$

$\operatorname{Re}=\rho U L / \eta_{0}=0.1 \quad \mathrm{Wi}=\tau U / L=1$

Trained RUDEs can make predictions in complicated flows

RUDEs are continuous-time tensorial models, so they are compatible with existing computational fluid dynamics tools that numerically solve the Cauchy momentum equation

Open ∇ FOAM ${ }^{\circledR}$
 (1) RheoTol

OpenFOAM with the RheoTool extension is a high-performance tool for simulating complex fluids with differential constitutive equations for the stress tensor

$$
\rho \frac{D \boldsymbol{u}}{D t}=-\nabla p+\nabla \cdot \boldsymbol{\sigma}+\boldsymbol{f} \quad \tau \boldsymbol{\tau} \boldsymbol{\sigma}+\boldsymbol{\sigma}+\sum_{n=1}^{9} g_{n}\left(\lambda_{n} ; \theta\right) \boldsymbol{T}_{n}=\eta_{0} \dot{\boldsymbol{\gamma}}
$$

Trained RUDEs can make predictions in complicated flows

RUDEs are continuous-time tensorial models, so they are compatible with existing computational fluid dynamics tools that numerically solve the Cauchy momentum equation

Open ∇ FOAM ${ }^{\circledR}$
 (1) RheoTol

OpenFOAM with the RheoTool extension is a high-performance tool for simulating complex fluids with differential constitutive equations for the stress tensor

$$
\rho \frac{D \boldsymbol{u}}{D t}=-\nabla p+\nabla \cdot \boldsymbol{\sigma}+\boldsymbol{f} \quad \tau \boldsymbol{\tau} \boldsymbol{\sigma}+\boldsymbol{\sigma}+\sum_{n=1}^{9} g_{n}\left(\lambda_{n} ; \theta\right) \boldsymbol{T}_{n}=\eta_{0} \dot{\boldsymbol{\gamma}}
$$

$\operatorname{Re}=\rho U L / \eta_{0}=0.1$
$\mathrm{Wi}=\tau U / L=1$

THANK YOU!!!!

