Leveraging large datasets to
discover protistan diversity
across scales
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Protists are essential players in global
biogeochemical cycles

* Single-celled microbial
eukaryotes are an essential link
in the food web between
numerically-abundant bacteria &
higher trophic levels
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But their distribution, ecology, and genetics is
complicated

* "Biological species” is complicated by the
fact that a growing number of taxa have
a variable “pangenome”

* Having many shared genes means that
you're all part of the same group; having
a set of genes you don’t share defines you
as a strain




Axes of variability in marine phytoplankton

In situ,
phytoplankton
genetic diversity

is one part of
many axes of
variability

- nitrogen fixation

EUNCTION - calcification

- stress / growth / repair




To study protists, we'll need cross-scale tools.
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And a lot of data
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How do strains of Emiliania huxleyi acclimate to
local environmental temperature?
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Strains of Emiliania huxleyi isolated from
across the global ocean
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Thermal response
curves vary in
shape and
according to
original isolation
latitude
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And differ from

the growth rate —
temperature
scaling we expect
from theory
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We can encode these insights into ecosystem models that can

predict coccolithophore distribution
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Sequencing franscriptomes can provide insight into
the mechanism of thermal response

Temperature (°C)

Total number of raw read sequences: >1,300,000,000
Number of predicted transcripts: 981,810; 1,161,365




Order 3963 Emiliania

MMETSP1156 Emiliania
MMETSP1154 Emiliania
Bacillariales MMETSP1157 Emiliania
Calcihaptophycidae  [MMETSP1155 Emiliania
Chlorodendrales MMETSP1152 Emiliania
| MMETSP1008 Emiliania

Strains of Emiliania poanl 71

Coccolithales ’MMETSFWOO? Emiliania

Actiniaria

Craspedida MMETSP1006 Emiliania
MMETSP1007 Emiliania

L] ) )
huxleyi with different
Mamiellales MMETSP1153 Emiliania
MNaviculales MMETSP0997 Emiliania
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But vastly different pools of overlapping gene
content
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Tools are seldom built for eukaryotes

* To process metatranscriptomes, | built an open-source pipeline called
eukrhythmic

* For taxonomic annotation of assembled sequences from metagenome-

assembled genomes and metatranscriptomes, | built a Python package
called EUKulele

Krinos et al. 2023

Krinos et al. 2021




Reassembling global
ocean samples using
the eukrhythmic
pipeline expands
gene recovery in
environmental
datasets
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Just these two samples from the Tara Oceans
dataset require up-to-date computing resources

* Total size of raw sequencing reads: 24Gb

* CPU hours required for assembly using just one of the four assembly
algorithms and one of the samples: 20 hours over 16 cores using

500GB of RAM

* Total number of predicted genes from one resulting assembly: 308,532

* Total number of predicted genes from all assemblies on previous plot:
15,241,002



Comparing
traditional multi-
omic annotations
to microscopic

counts

Microscogy

1.00 -

0.751

0.50 1

0.25 A1

0.00 A1

Metatranscriptomes

1.00 1

Relative abundance

0.75 A

0.50 1

0.25 1

Family

Lineage-conflicted
Other

|:| Rhizosoleniaceae

. Hemiaulaceae

. Skeletonemataceae

. Thalassiosiraceae
Chaetocerotales

Cymatosiraceae
Odontellaceae
Fragilariaceae
Leptocylindraceae
Lithodesmiaceae

Stephanopyxidaceae

Stephanodiscaceae
Thalassionemataceae

Triceratiaceae

How can we develop new algorithms to process taxonomic annotations of

protists in a high-throughput way?



tax-aliquots:
identifying
taxonomic identity
of eukaryotic
communities via
clustering

related by sequence

alignment

related by
subsequence
patterns

meta-omic
sequences

database
sequences
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High-performance computing enables this
refinement

* Just in our database, we have 15,514,482 sequences that contain
194,481 unique 4-base amino acid kAAmers and 625,624,476 unique

/-base amino acid kAAmers

* Making comparisons between the training data alone requires 2.41e14
computations



High-performance
computing enables
important
ecosystem insights
about where
protists are found
and what
ecosystem services
they’'re providing
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Thank youl!
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