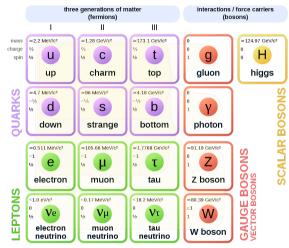
Lattice QCD Approach to Radiative Leptonic Decays

Speaker: Christopher Kane¹

Advisor: Stefan Meinel¹

Colaborators: Davide Giusti², Christoph Lehner², Amarjit Soni³

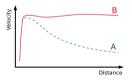

CSGF Program Review 2023

Date: July 19, 2023

¹University of Arizona

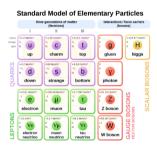
²University of Regensburg, Germany

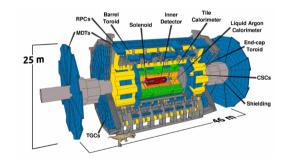
³Brookhaven National Lab


Standard Model of Elementary Particles

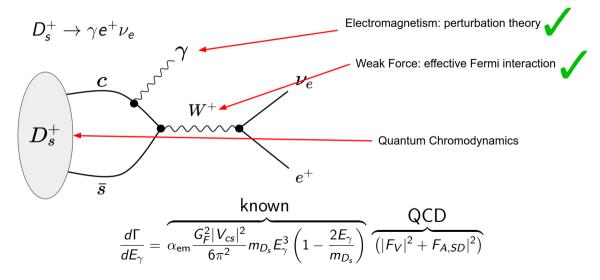
Unsolved problems in particle physics

Dark Matter

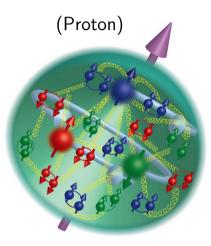

Matter anti-matter asymmetry


Indirect detection methods

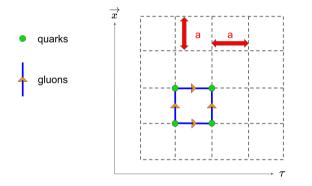
Calculate Decay Rate Using Standard Model



Measure Decay Rate experimentally



Radiative leptonic decays


How to calculate the QCD piece?

- Stength of QCD is larger at smaller energy scales
- Inside the D_s^+ meson, quarks and gluons at low energy scales
- Perturbation theory not practical, expansion parameter is not small
- Need a non-perturbative method

Intro to lattice QCD

Goal: Numerically solve the QCD path integral

- Discretize space and time on a finite lattice
- Perform integral over quarks analytically
- Perform Wick rotation to imaginary time
 → replace t = −iτ with τ ∈ ℝ

Intro to lattice QCD

Re-writing the path integral (schematically):

$$\langle \mathsf{Object to calculate}
angle = \langle f(M^{-1}[U])
angle = rac{\int \mathcal{D}[U] \,
ho[U] \, f(M^{-1}[U])}{\int \mathcal{D}[U] \,
ho[U]}$$

- Probability density $\sim
 ho[U] = \det(M[U])e^{-S_{
 m G}^{E}[U]}$
- Solve the integral over gluon fields U using Monte Carlo methods
- Calculate propagators $M^{-1}[U]$, plug into $f(M^{-1}[U])$

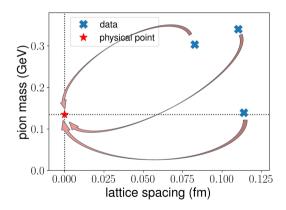
What is the typical size of matrix M?

High performance computing centers utilized

Stampede2 Supercomputer

University of Texas

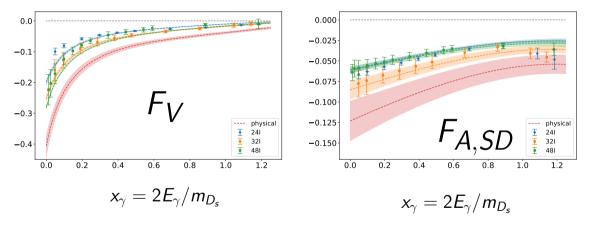
Supermuc-NG



Leibniz Supercomputing Centre, Germany

Lattice parameters

Outline of the calculation:


- 1 Perform calculation on multiple lattices
 - Different lattice spacing a
 - Different pion mass m_{π} (quark masses)
- 2 Extrapolate to physical result
 - lattice spacing $a \rightarrow 0$
 - pion mass $m_{\pi} o m_{\pi, ext{physical}}$

DISCLAIMER

PARENTS STRONGLY CAUTIONED	For showing that might s contain syste errors	still
SOME MATERIAL MAY BE INAPPROPRIATE FOR CHILDREN UNDER 13		

Lattice QCD results for F_V and $F_{A,SD}$

Physical values: $0 < x_{\gamma} \leq 1$

Branching fraction prediction (preliminary)

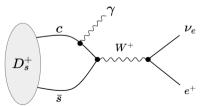
• Branching fraction is fraction of D_s^+ events that decay into a particular final state

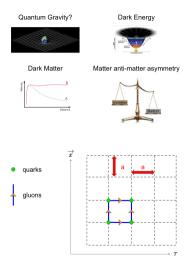
$${\cal B}(D^+_s o \gamma e^+
u_e) =$$
 Fraction of D^+_s that decay into $\gamma e^+
u_e$

Our prediction:
$${\cal B}(D_s^+ o \gamma e^+
u_e) = 2.8(4) imes 10^{-6}$$

Experimental upper bound: ${\cal B}(D_s^+ o \gamma e^+
u_e) < 1.3 imes 10^{-4}$

• Upcoming experiments can improve the upper bound and possibly quote results


Quick digression: practicums


- Two practicums at Lawrence Berkeley National Lab
- Working on methods for quantum computer simulations of high energy physics
- The CSGF has changed the trajectory of my career in a hugely positive way

Thank you to everyone at the CSGF and Krell who has helped me along the way :)

Summary

- Standard model is incomplete
- Generally, calculations of bound states of quarks, i.e. protons, D_s meson, often require non-perturbative lattice QCD
- Radiative leptonic decays are an interesting process, and we are calculating the decay rate

