
DYNAMIC RESOURCE SCHEDULING
OF JUPYTER NOTEBOOKS 
AT CELL-GRANULARITY

By: Louis Jenkins



Disclaimer

 Research Topic drastically changed in early 2022…
 Prior work was in Persistent Memory
 (Coincidence) Intel’s Optane PMM was ‘killed off’ in Q2 2022 (July 28th)



What are Jupyter Notebooks?
 Web App that enables creation and sharing of:
 Code (Python, Julia, R, etc.)
 Equations (LaTeX)
 Visualizations (Graphs and Figures)

 Used in many domains
 Data Science, Computational Science, ML, etc.

 Run on many types of hardware
 Laptops and Desktops
 Cloud Computing (Google Collab)
 Supercomputers (NERSC) 

* Source: juptyer.org



Jupyter Notebook Cells
 Blocks of code in a Jupyter Notebook are called cells
 Cells can be created, modified, and deleted at any time
 Cells can be run any number of times in any arbitrary order
 Cells must be run serially (no two cells can run in parallel)
 Cells can be followed by arbitrary periods of idleness, referred to as think time
 Cells can vary wildly in terms of system resource requirements



Jupyter Notebook on Supercomputers
 Jupyter Notebooks on Supercomputers pose interesting questions
 Job allocations on supercomputers typically are exclusive by nature
 “What happens if a Notebook has a lot of ‘think time’ or uses small bursts of 

computation?”
 Supercomputers use static and coarse-grained batch allocation schemes
 “What happens to unused resources when a long-running cell is not using it? What 

happens to unused cores when running a single-threaded cell? What about GPUs?”
 Supercomputers often have long queue times for allocations
 “What happens if a data scientist wants to just quickly generate results for analysis? 

What is an acceptable level of responsiveness for an ‘interactive’ application?”



Proposed Solution
 Co-Allocation of Jupyter Notebooks (Shared Allocation)
 Jupyter Notebooks share allocations of resources to offset under-provisioning

 Allocate Resources at the beginning of Notebook Cells
 Only provide a notebook cell what it needs, no more and no less

 Design a specialized scheduler (“Dynamic Scheduler”) for Notebooks
 Optimized scheduling solution for Notebooks that factors in ‘think time’



Evaluation Criteria for a Scheduler
 Utilize two metrics to assess capability of scheduler
 Averaged Normalized Turn-Around Time (ANTT) [Minimize]

 Used for evaluating performance of individual Notebooks

 System Throughput (STP) [Maximize]
 Used for evaluating performance of entire system.

 Dynamic Scheduler compared to two other schedulers
 “Naïve” Scheduler – Defer to OS Scheduler
 “Partitioned” Scheduler – Evenly Partition and Defer to OS Scheduler

 Dynamic Scheduler makes decisions at the boundaries of Notebook cells
 Determine # of CPUs, # of GPUs, amount of memory, etc. via offline traces
 Allocate Resources at beginning of cell, De-Allocate at end of cell



Best, Average, and Worst Case
 Custom Scheduler for a Jupyter Notebook would need to handle:
 Worst-Case: No Idle Time, Non-Interactive
 Running pre-written Notebook from top-to-bottom

 Average-Case: Sporadic but ‘Realistic’ (injected) Idle Time, Semi-Interactive
 Notebook that has an attentive active user

 Best-Case: Exaggerated Idle Time
 “Oops, I left my Notebook running overnight”

 Goal: Need Target Application for each of these cases



Worst Case – Target Application #1
 Experiment includes a set of Machine Learning Notebooks (handson-ml2)
 Notebook A – Cycles of High-to-Low Compute (single or all cores)
 Notebook B – Low Compute (primarily single core)
 Notebook C – High Compute (primarily all cores)
 Notebook D – Low Compute (primarily single core)

 Combinations of Notebooks are run at least N times
 Combinations: A,B,C,D,AB,AC,AD,BC,BD,CD,ABC,…
 Example (N=3, ABCD): A ran 12 times, B ran 8 times, C ran 4 times, D ran 3 times

 Goal: Explore how the schedulers handled these various workloads
 Side-Note: Notebooks were ordered by “How long they took to run”







A + C are high compute!
Oversubscription Avoidance!





D + B are low compute!
Overhead from Scheduler!



A + C are high compute
D + B are low compute

Oversubscription Avoidance > 
Scheduler Overhead







A + C are high compute!





D + B are low compute!



Take-Away

 Dynamic Scheduler has benefit of oversubscription avoidance
 High-compute notebooks seem to show some improvement
 Has high degree of overhead (visible in undersubscribed systems)

 Native Scheduler has benefit of handling undersubscription
 Has no overhead

 Static Scheduler is mostly in-between both
 No dynamic oversubscription avoidance, poor handling of undersubscription



Average Case: Target Application #2
 Arkouda is an HPC-class pseudo-replacement for NumPy/Pandas
 Python-Frontend Client which communicates with Chapel-Backend Server
 Replaces imports to NumPy/Pandas with Arkouda’s wrappers

 “Poster-Child” for Interactive HPC
 Python Front-End usable from a Jupyter Notebook
 Server is allocated across multiple nodes on the backend server
 Idleness of Server is based on idleness of Client

 Real active users make use of the application on real supercomputers
 Provides opportunity to collect data about real applications, including idle time



Arkouda Trace Logs
 Obtained Trace Logs from real users
 Order of operations, operands, time taken, memory consumed, idle time

 Provides trace logs for 4 compute clusters
 SL (Legacy) [7/13/2021 – 6/27/2022] {<320 Nodes, 64 Cores} 100M+ Rows
 BB [12/15/2021 – 3/8/2022] {1 Node, 64 Cores} <1M Rows
 NC [2/25/2022 – 9/14/2022] {<40 Nodes, 64 Cores} <20M Rows
 SE [4/1/2022 – 7/8/2022] {<60 Nodes, 64 Cores} <4M Rows

 Aggregate Statistics
 Out of 130M cells, 1.9M had ‘think time’ (~1.5%)
 Mean think time was ~15s (max of 40,000s, std of 696s)



Future Goal: Average + Best Case Analysis
 Worst-Case: Non-Interactive Notebooks (no idle time)
 Semi-Explored with Machine Learning Notebooks

 Average-Case: Semi-Interactive Notebooks (‘realistic’ idle time)
 Injection of idle time based on trace records

 Best-Case: Fully-Interactive Notebooks (exaggerated idle time)
 Injection of arbitrarily long idle time


	DYNAMIC RESOURCE SCHEDULING�OF JUPYTER NOTEBOOKS �AT CELL-GRANULARITY
	Disclaimer
	What are Jupyter Notebooks?
	Jupyter Notebook Cells
	Jupyter Notebook on Supercomputers
	Proposed Solution
	Evaluation Criteria for a Scheduler
	Best, Average, and Worst Case
	Worst Case – Target Application #1
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Take-Away
	Average Case: Target Application #2
	Arkouda Trace Logs
	Future Goal: Average + Best Case Analysis

