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Disclaimer

 Research Topic drastically changed in early 2022…
 Prior work was in Persistent Memory
 (Coincidence) Intel’s Optane PMM was ‘killed off’ in Q2 2022 (July 28th)



What are Jupyter Notebooks?
 Web App that enables creation and sharing of:
 Code (Python, Julia, R, etc.)
 Equations (LaTeX)
 Visualizations (Graphs and Figures)

 Used in many domains
 Data Science, Computational Science, ML, etc.

 Run on many types of hardware
 Laptops and Desktops
 Cloud Computing (Google Collab)
 Supercomputers (NERSC) 

* Source: juptyer.org



Jupyter Notebook Cells
 Blocks of code in a Jupyter Notebook are called cells
 Cells can be created, modified, and deleted at any time
 Cells can be run any number of times in any arbitrary order
 Cells must be run serially (no two cells can run in parallel)
 Cells can be followed by arbitrary periods of idleness, referred to as think time
 Cells can vary wildly in terms of system resource requirements



Jupyter Notebook on Supercomputers
 Jupyter Notebooks on Supercomputers pose interesting questions
 Job allocations on supercomputers typically are exclusive by nature
 “What happens if a Notebook has a lot of ‘think time’ or uses small bursts of 

computation?”
 Supercomputers use static and coarse-grained batch allocation schemes
 “What happens to unused resources when a long-running cell is not using it? What 

happens to unused cores when running a single-threaded cell? What about GPUs?”
 Supercomputers often have long queue times for allocations
 “What happens if a data scientist wants to just quickly generate results for analysis? 

What is an acceptable level of responsiveness for an ‘interactive’ application?”



Proposed Solution
 Co-Allocation of Jupyter Notebooks (Shared Allocation)
 Jupyter Notebooks share allocations of resources to offset under-provisioning

 Allocate Resources at the beginning of Notebook Cells
 Only provide a notebook cell what it needs, no more and no less

 Design a specialized scheduler (“Dynamic Scheduler”) for Notebooks
 Optimized scheduling solution for Notebooks that factors in ‘think time’



Evaluation Criteria for a Scheduler
 Utilize two metrics to assess capability of scheduler
 Averaged Normalized Turn-Around Time (ANTT) [Minimize]

 Used for evaluating performance of individual Notebooks

 System Throughput (STP) [Maximize]
 Used for evaluating performance of entire system.

 Dynamic Scheduler compared to two other schedulers
 “Naïve” Scheduler – Defer to OS Scheduler
 “Partitioned” Scheduler – Evenly Partition and Defer to OS Scheduler

 Dynamic Scheduler makes decisions at the boundaries of Notebook cells
 Determine # of CPUs, # of GPUs, amount of memory, etc. via offline traces
 Allocate Resources at beginning of cell, De-Allocate at end of cell



Best, Average, and Worst Case
 Custom Scheduler for a Jupyter Notebook would need to handle:
 Worst-Case: No Idle Time, Non-Interactive
 Running pre-written Notebook from top-to-bottom

 Average-Case: Sporadic but ‘Realistic’ (injected) Idle Time, Semi-Interactive
 Notebook that has an attentive active user

 Best-Case: Exaggerated Idle Time
 “Oops, I left my Notebook running overnight”

 Goal: Need Target Application for each of these cases



Worst Case – Target Application #1
 Experiment includes a set of Machine Learning Notebooks (handson-ml2)
 Notebook A – Cycles of High-to-Low Compute (single or all cores)
 Notebook B – Low Compute (primarily single core)
 Notebook C – High Compute (primarily all cores)
 Notebook D – Low Compute (primarily single core)

 Combinations of Notebooks are run at least N times
 Combinations: A,B,C,D,AB,AC,AD,BC,BD,CD,ABC,…
 Example (N=3, ABCD): A ran 12 times, B ran 8 times, C ran 4 times, D ran 3 times

 Goal: Explore how the schedulers handled these various workloads
 Side-Note: Notebooks were ordered by “How long they took to run”







A + C are high compute!
Oversubscription Avoidance!





D + B are low compute!
Overhead from Scheduler!



A + C are high compute
D + B are low compute

Oversubscription Avoidance > 
Scheduler Overhead







A + C are high compute!





D + B are low compute!



Take-Away

 Dynamic Scheduler has benefit of oversubscription avoidance
 High-compute notebooks seem to show some improvement
 Has high degree of overhead (visible in undersubscribed systems)

 Native Scheduler has benefit of handling undersubscription
 Has no overhead

 Static Scheduler is mostly in-between both
 No dynamic oversubscription avoidance, poor handling of undersubscription



Average Case: Target Application #2
 Arkouda is an HPC-class pseudo-replacement for NumPy/Pandas
 Python-Frontend Client which communicates with Chapel-Backend Server
 Replaces imports to NumPy/Pandas with Arkouda’s wrappers

 “Poster-Child” for Interactive HPC
 Python Front-End usable from a Jupyter Notebook
 Server is allocated across multiple nodes on the backend server
 Idleness of Server is based on idleness of Client

 Real active users make use of the application on real supercomputers
 Provides opportunity to collect data about real applications, including idle time



Arkouda Trace Logs
 Obtained Trace Logs from real users
 Order of operations, operands, time taken, memory consumed, idle time

 Provides trace logs for 4 compute clusters
 SL (Legacy) [7/13/2021 – 6/27/2022] {<320 Nodes, 64 Cores} 100M+ Rows
 BB [12/15/2021 – 3/8/2022] {1 Node, 64 Cores} <1M Rows
 NC [2/25/2022 – 9/14/2022] {<40 Nodes, 64 Cores} <20M Rows
 SE [4/1/2022 – 7/8/2022] {<60 Nodes, 64 Cores} <4M Rows

 Aggregate Statistics
 Out of 130M cells, 1.9M had ‘think time’ (~1.5%)
 Mean think time was ~15s (max of 40,000s, std of 696s)



Future Goal: Average + Best Case Analysis
 Worst-Case: Non-Interactive Notebooks (no idle time)
 Semi-Explored with Machine Learning Notebooks

 Average-Case: Semi-Interactive Notebooks (‘realistic’ idle time)
 Injection of idle time based on trace records

 Best-Case: Fully-Interactive Notebooks (exaggerated idle time)
 Injection of arbitrarily long idle time
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