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PhD: How are optoelectronic properties of
QDs affected by atomic vibrations?

* Understanding exciton-phonon coupling and its impact on processes
such as exciton cooling, photoluminescence, and trapping
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Postdoc: How can we rationally control
vibrational properties of materials?

* Simplest picture: collection of non-interacting phonons
o Phonons are quantized, collective oscillations of the lattice
o Carry sound and heat, and can interact with light
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* Some materials have significant “anharmonicity” (phonon-phonon
Interactions)



Thermoelectrics convert heat to electricity

* Good thermoelectrics have low thermal conductivities
o Anharmonic vibrational structure (i.e., phonon-phonon interactions)

* Clathrates: cage-like structures with loosely bound, embedded guest
* Hybridization of cage acoustic mode and guest optical mode
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Developing a coarse-grained clathrate
model: BagGa ,Ge,, and SrgGa, Ge,,

* Lattice of large “cage” atoms with Lennard-Jones interactions
* Small "guest” atom with quartic interaction with its own cage
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Accounting for anharmonicity

* Anharmonic single-particle phonon Green'’s function:
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o Could calculate using MD... challenging!

* Write anharmonic GF in terms of noninteracting GF and self-energy

D ' (k,w) = D; " (k,w) — m(k,w)



VDMFT: Map lattice dynamics onto
Impurity problem

* Nonperturbatively solve for self-energy of a finite system coupled to
a harmonic bath

o Key approximation of local self-energy: W(k, w) ~ 71'(0.))
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1) Defining the impurity problem

* Difference between the lattice GF and system GF defines system-
bath coupling: Aw)=D_ (w) — D" (w)

SyS
0.6 1 ﬂ

system

cellular

= 02
| N
0.1 U \D
0.0
0 10 20 30 40 50 60 70 8 90

Energy (cm™1)




2) Calculating impurity GF

* Impurity GF (anharmonic system + harmonic bath):

Dy () = [ dte ([u(t), u(0)])

* Use generalized Langevin equation to solve system dynamics
o Non-Markovian (frequency-dependent) friction makes it dynamical MFT

i(t) = =5 = [ st = s)i() + (0
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3) Getting (local) self-energy

* Difference between impurity anharmonic GF and harmonic GF is the
self-energy: m(w) =D (w)— D" (w)
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4) Iterate (if needed...)

* Use self-energy to define lattice GF that includes anharmonicity
o New cellular GF, new system GF, new hybridization
o New impurity GF and GFO, new self energy

» Eventually, convergence when D¢ (w) = Dipyp(w)
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Anharmonic spectral function
D 'k,w)=D;'(k,w) — w(k,w)



Anharmonic spectral function
A(k,w) = =+ Tr[SD(k,w)]
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VDMFT: BaGG at 300K
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VDMFT: BaGG at 300K

BaGG 300K: MD
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Turning up anharmonicity:

SrGG at 300K

SrGG 300K: MD
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~LTr[3D(k,w)] (ps?)

Turning up anharmonicity:
SrGG at 300K
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Turning up anharmonicity:
SrGG at 300K
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How important is the full self-energy?

o Diagonal approximation 9OSrGG 300K: Full SSSSG 300K: Diagonal

o Neglects non- dlagonal elements %0 -
of self-energy: D~ — D

* Significant anharmonic
hybridization between cage-
acoustic and guest-rattling
modes

* Phonon picture is not valid!
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Summary and looking forward

* VDMFT calculates anharmonic phonon GF
o Includes local anharmonicity exactly

o Successfully calculates phonon spectral function for model clathrates with
various degrees of anharmonicity

o Cheaper than MD and can account for nuclear quantum effects

* Can use phonon GF to compute thermal conductivity
o Phonon hybridization is key to clathrates’ low thermal conductivity



College of Chemistry Math Bootcamp

* Student-initiated, designed, and taught for incoming physical
chemistry students centered around group problem solving
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* Content freely available at chemmathbootcamp.com
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