Anharmonic lattice dynamics of clathrates explained by vibrational dynamical mean-field theory Dipti Jasrasaria Berkelbach Group, Columbia University

CSGF Annual Program Review | July 17, 2023

PhD: How are optoelectronic properties of QDs affected by atomic vibrations?

• Understanding exciton-phonon coupling and its impact on processes such as exciton cooling, photoluminescence, and trapping

D. Jasrasaria, E. Rabani. *arXiv*: 2301.06691 (2023).

D. Jasrasaria, D. Weinberg, J. Philbin, E. Rabani. J Chem. Phys. 157, 020901 (2022).

Radiative recombination

 \sim ns

Postdoc: How can we rationally control vibrational properties of materials?

Simplest picture: collection of non-interacting phonons

 Phonons are quantized, collective oscillations of the lattice
 Carry sound and heat, and can interact with light

Some materials have significant "anharmonicity" (phonon-phonon interactions)

Thermoelectrics convert heat to electricity

- Good thermoelectrics have low thermal conductivities • Anharmonic vibrational structure (i.e., phonon-phonon interactions)
- Clathrates: cage-like structures with loosely bound, embedded guest
- Hybridization of cage acoustic mode and guest optical mode

T. Tadano, S. Tsuneyuki. *Phys. Rev. Lett.* **120**, 105901 (2018). M. Christensen et al. *Nature Mater.* **7**, 811 (2008).

Developing a coarse-grained clathrate model: $Ba_8Ga_{16}Ge_{30}$ and $Sr_8Ga_{16}Ge_{30}$

- Lattice of large "cage" atoms with Lennard-Jones interactions
- Small "guest" atom with quartic interaction with its own cage

Accounting for anharmonicity

• Anharmonic single-particle phonon Green's function:

$$i\hbar D_{\lambda\lambda'}(\boldsymbol{k},\omega) = \int_0^\infty dt e^{i\omega t} \langle [u_\lambda(\boldsymbol{k},t), u_{\lambda'}(-\boldsymbol{k},0)] \rangle$$

• Could calculate using MD... challenging!

• Write anharmonic GF in terms of noninteracting GF and self-energy

$$\boldsymbol{D}^{-1}(\boldsymbol{k},\omega) = \boldsymbol{D}_0^{-1}(\boldsymbol{k},\omega) - \boldsymbol{\pi}(\boldsymbol{k},\omega)$$

VDMFT: Map lattice dynamics onto impurity problem

 Nonperturbatively solve for self-energy of a finite system coupled to a harmonic bath

 $_{\circ}$ Key approximation of local self-energy: $m{\pi}(m{k},\omega)pproxm{\pi}(\omega)$

P. Shih, T. C. Berkelbach. Phys. Rev. B 106, 144307 (2022).

1) Defining the impurity problem

• Difference between the lattice GF and system GF defines systembath coupling: $\Delta(\omega) = D_{svs}^{-1}(\omega) - D_C^{-1}(\omega)$

2) Calculating impurity GF

• Impurity GF (anharmonic system + harmonic bath):

$$i\hbar D_{\rm imp}(\omega) = \int_0^\infty dt e^{i\omega t} \langle [u(t), u(0)] \rangle$$

Use generalized Langevin equation to solve system dynamics
 Non-Markovian (frequency-dependent) friction makes it dynamical MFT

$$\ddot{u}(t) = -\frac{dV}{du} - \int_0^t ds \gamma(t-s)\dot{u}(s) + \xi(t)$$

M. Ceriotti, G. Bussi, M. Parrinello. J. Chem. Theory Comput. 6, 1170 (2010).

3) Getting (local) self-energy

• Difference between impurity anharmonic GF and harmonic GF is the self-energy: $\pi(\omega) = D_{imp,0}^{-1}(\omega) - D_{imp}^{-1}(\omega)$

4) Iterate (if needed...)

- Use self-energy to define lattice GF that includes anharmonicity

 New cellular GF, new system GF, new hybridization
 New impurity GF and GF0, new self energy
- Eventually, convergence when $oldsymbol{D}_C(\omega) = oldsymbol{D}_{ ext{imp}}(\omega)$

Anharmonic spectral function $D^{-1}(\boldsymbol{k},\omega) = D_0^{-1}(\boldsymbol{k},\omega) - \pi(\boldsymbol{k},\omega)$

Anharmonic spectral function

$$A(\mathbf{k},\omega) = -\frac{1}{\pi} \operatorname{Tr}[\Im D(\mathbf{k},\omega)]$$

VDMFT: BaGG at 300K

D. Jasrasaria, T. C. Berkelbach. *In preparation*.

VDMFT: BaGG at 300K

x,y

Ζ

D. Jasrasaria, T. C. Berkelbach. *In preparation*.

Turning up anharmonicity: SrGG at 300K

x,y

Turning up anharmonicity: SrGG at 300K

Turning up anharmonicity: SrGG at 300K

How important is the *full* self-energy?

- Diagonal approximation \circ Neglects non-diagonal elements of self-energy: $D^{-1}
 ightarrow D$
- Significant anharmonic hybridization between cageacoustic and guest-rattling modes
- Phonon picture is not valid!

Summary and looking forward

• VDMFT calculates anharmonic phonon GF

 \odot Includes local anharmonicity exactly

 \odot Successfully calculates phonon spectral function for model clathrates with various degrees of anharmonicity

 \odot Cheaper than MD and can account for nuclear quantum effects

• Can use phonon GF to compute thermal conductivity O Phonon hybridization is key to clathrates' low thermal conductivity

College of Chemistry Math Bootcamp

• Student-initiated, designed, and taught for incoming physical chemistry students centered around group problem solving

• Content freely available at chemmathbootcamp.com

R. Clune*, A. Das*, D. Jasrasaria*, E. Rossomme, O. Cohen, A. Baranger. chemRxiv:2022-dl84f (2022).

Acknowledgements

COLUMBIA UNIVERSITY Department of Chemistry

dj2667@columbia.edu