## Constrained Low-rank Approximation

Koby Hayashi<br>School of Computational Science and Engineering, College of Computing at the Georgia Institute of Technology

1.What is Low-rank Approximation?
2.Applications of Low-rank Approximation 3.Randomized Algorithms for Low-rank Approximation

## Low-rank Matrix Approximation



$$
\min _{\lfloor\subseteq|Y|}\left\|X-W H^{T}\right\|_{F}
$$

$\{W, H\}$

## Nonnegative Matrix Factorization (NMF)

## $\min _{\{W, H\} \geq 0}\left\|X-W H^{T}\right\|_{F}$

Why?

- Images
- Count Data
- (Hyper) Graphs
- Probabilities



## NMF Example : Fashion MNIST Data Set

Clothing Categories :

- T-shirt/top
- Trouser
- Pullover
- Dress
- Bag

Ect ...

Interpretability via parts-based representation


SVD


## Netflix Prize

In 2006 Netflix offered $\$ 1$ million dollars to improve their recommendation algorithm by $\% 10$.

In 2009 a team improved the algorithm by $\% 10.6$ and won.
Netflix did not use their algorithm but adopted one that improved their method by only $\% 8.43 \ldots$

## Why?

## The Adopted Method

## 2 Main Techniques :

1. Restricted Boltzmann Machines
2. Low-rank Matrix Approximation!
Unkown User l rating
for movie $y$
$M_{l y}=0$
Known: User i rating
for movie $j$
$M_{i j}=1$

Films
 on movie y

$$
\min _{\{W, H\} \geq 0}\left\|M *\left(X-W H^{T}\right)\right\|_{F}
$$

## Again... Why?

In 2006 Netflix offered $\$ 1$ million dollars to improve their recommendation algorithm by \%10.

In 2009 a team improved the algorithm by $\% 10.6$ and won.
Netflix did not use their algorithm but adopted one that improved their method by only $\% 8.43 \ldots$

## Why? 1. Update-ability <br> 2. Scalability

- Training data had 100 million ratings
- Real data had more than 5 billion


## How to Scale

## Phillip B. Gibbons @CMU

## 1. Scale up : increase resources on a single node

## 2. Scale out : use multiple nodes

3. Scale down : reduce the amount of data or resources needed
https://github.com/ramkikannan/planc
[^0]
## Computing a Nonnegative Matrix Factorization

$$
\min _{\{W, H\} \geq 0}\left\|X-W H^{T}\right\|_{F}
$$

Nonlinear - optimization problem! Its NP-HARD!

Repeat Until Converged:

$$
\left.\begin{array}{l}
\text { 1. } W^{\text {new }} \leftarrow \min _{\{W\} \geq 0}\left\|X-W H^{T}\right\|_{F} \\
\text { 2. } H^{\text {new }} \leftarrow \min _{\{H\} \geq 0}\left\|X-W^{\text {new }} H^{T}\right\|_{F}
\end{array}\right\}
$$

Nonnegative
Least Squares Problems

## Symmetric NMF

Paper

$$
\begin{gathered}
\min _{\{H\} \geq 0}\left\|A-H H^{T}\right\|_{F} \\
A=A^{T}
\end{gathered}
$$



Da Kuang, Chris Ding, Haesun Park, Symmetric Nonnegative Matrix Factorization for Graph Clustering, The 12th SIAM International Conference on Data Mining (SDM '12), pp. 106--

## Random Compression for SymNMF

1. $\Omega_{i j}=\mathcal{N}(0,1)$, a random matrix
2. $Q R=A \Omega$, compute orthonormal basis
3. $\mathrm{T}=Q^{T} A Q \leftarrow$ small
4. $A \approx Q T Q^{T}$

$Q$ is an approximate basis for $A$ Probabilistic algorithms for constructing approximate matrix decompositions, (2009)

## Dense Problem: Hypergraph

## Start with:

$$
\min _{\{H\} \geq 0}\left\|Q T Q^{T}-H H^{T}\right\|_{F}
$$

Switch to:

$$
\min _{\{H\} \geq 0}\left\|X-H H^{T}\right\|_{F}
$$

- $4 x$ speed up

- Preserve solution quality


## Sparse Problem : Microsoft Academic Graph



Microsoft Academic Graph

1. ~37 million vertices
2. $\sim 1$ billion edges

## Row Sampling Least Squares

\(\left.\begin{array}{|c}\min _{x}\|A x-b\|_{2}^{2} <br>
A is m \times and full rank <br>
x is length k <br>

b is length m\end{array}\right] \rightarrow\)\begin{tabular}{c}
Obtain a distribution <br>
$p_{1}, \ldots, p_{i} \ldots, p_{m}$ <br>
For the rows of $A$ and $b$

$\rightarrow$


| $\min \\|S A x-S b\\|_{2}^{2}$ |
| :---: |
| $S$ is $s \times m, s<m$ |
| $S$ samples row of $A$ and $b$ | <br>

\hline
\end{tabular}


M. W. Mahoney, Randomized algorithms for matrices and data, CoRR

## Sparse Problem : Microsoft Academic Graph



Microsoft Academic Graph 1. ~37 million vertices
2. $\sim 1$ billion edges

Different types of randomization work for different problem!

## End



Srinivas Eswar


Ramakrishnan Kannan


Haesun Park


Richard Vuduc


Ben Cobb


[^0]:    S. Eswar, K. Hayashi, G. Ballard, R. Kannan, M. A. Matheson, and H. Park, "Planc:

    Parallel low-rank approximation with nonnegativity constraints," ACM Trans. Math. Softw.
    S. Eswar, K. Hayashi, G. Ballard, R. Kannan, R. Vuduc, and H. Park, "Distributedmemory parallel symmetric nonnegative matrix factorization," in SC20: Interna-
    tional Conference for High Performance Computing, Networking, Storage and Analysis, 2020
    S. Eswar, B. Cobb, K. Hayashi, R. Kannan, G. Ballard, R. Vuduc, and H. Park. 2023. "Distributed-Memory Parallel JointNMF". In Proceedings of the 37th International Conference on Supercomputing (ICS '23).

