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1.What is Low-rank Approximation?

2.Applications of Low-rank Approximation

3.Randomized Algorithms for Low-rank 

Approximation



Low-rank Matrix Approximation

 𝑋 ∈ ℝ𝑚×𝑛

𝑊 ∈ ℝ𝑚×𝑘

𝐻 ∈ ℝ𝑛×𝑘

𝑘 ≪ min(𝑚, 𝑛)

𝑋

×

𝑊

𝐻𝑇

≈

min
{𝑊,𝐻}

||𝑋 − 𝑊𝐻𝑇||𝐹

Singular Value 

Decomposition gives 

optimal solution



Nonnegative Matrix Factorization (NMF)

𝑋

×

𝑊

𝐻𝑇

≈

min
{𝑊,𝐻}≥0

||𝑋 − 𝑊𝐻𝑇||𝐹

Why?

• Images

• Count Data

• (Hyper) Graphs

• Probabilities



NMF Example : Fashion MNIST Data Set

SVD NMF

Clothing Categories : 
• T-shirt/top
• Trouser
•  Pullover
•  Dress
•  Bag
Ect …

Interpretability 

via parts-based 

representation



Netflix Prize

https://netflixtechblog.com/netflix-recommendations-beyond-the-

5-stars-part-1-55838468f429

In 2006 Netflix offered $1 million dollars to improve their recommendation 
algorithm by %10. 

In 2009 a team improved the algorithm by %10.6 and won. 

Netflix did not use their algorithm but adopted one that 
improved their method by only %8.43…

Why?



The Adopted Method

×

𝑊

𝐻𝑇

≈

2 Main Techniques : 
1. Restricted Boltzmann Machines
2. Low-rank Matrix Approximation!

min
{𝑊,𝐻}≥0

||𝑀 ∗ (𝑋 − 𝑊𝐻𝑇)||𝐹

𝑋Users

Films

Bell, Robert M. et al. “The BellKor solution to the Netflix Prize.” (2007).

(𝑖, 𝑗)
𝐾𝑛𝑜𝑤𝑛:  𝑈𝑠𝑒𝑟 𝑖 𝑟𝑎𝑡𝑖𝑛𝑔 

𝑓𝑜𝑟 𝑚𝑜𝑣𝑖𝑒 𝑗
𝑀𝑖𝑗 = 1

𝑈𝑛𝑘𝑜𝑤𝑛 𝑈𝑠𝑒𝑟 𝑙 𝑟𝑎𝑡𝑖𝑛𝑔 
𝑓𝑜𝑟 𝑚𝑜𝑣𝑖𝑒 𝑦

𝑀𝑙𝑦 = 0

(𝑙, 𝑦) (𝑙, 𝑦)

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑈𝑠𝑒𝑟 𝑙 
𝑜𝑛 𝑚𝑜𝑣𝑖𝑒 𝑦



Again… Why?

https://netflixtechblog.com/netflix-recommendations-beyond-the-

5-stars-part-1-55838468f429

In 2006 Netflix offered $1 million dollars to improve their recommendation 
algorithm by %10. 

In 2009 a team improved the algorithm by %10.6 and won. 

Netflix did not use their algorithm but adopted one that 
improved their method by only %8.43…

Why? 1. Update-ability
2. Scalability
• Training data had 100 million ratings
• Real data had more than 5 billion



How to Scale

Phillip B. Gibbons @CMU
1. Scale up : increase resources on 

a single node 
2. Scale out : use multiple nodes
3. Scale down : reduce the amount 

of data or resources needed

S. Eswar, K. Hayashi, G. Ballard, R. Kannan, M. A. Matheson, and H. Park, “Planc:
Parallel low-rank approximation with nonnegativity constraints,” ACM Trans. Math. Softw.

S. Eswar, K. Hayashi, G. Ballard, R. Kannan, R. Vuduc, and H. Park, “Distributed-
memory parallel symmetric nonnegative matrix factorization,” in SC20: Interna-
tional Conference for High Performance Computing, Networking, Storage and Analysis, 2020

S. Eswar, B. Cobb, K. Hayashi, R. Kannan, G. Ballard, R. Vuduc, and H. Park. 2023. “Distributed-Memory Parallel 
JointNMF”. In Proceedings of the 37th International Conference on Supercomputing (ICS '23).

https://github.com/ramkikannan/planc



Computing a Nonnegative Matrix Factorization

min
{𝑊,𝐻}≥0

||𝑋 − 𝑊𝐻𝑇||𝐹

Nonlinear – optimization problem!
Its NP-HARD! 

Repeat Until Converged:
1. 𝑊𝑛𝑒𝑤 ← min

{𝑊}≥0
||𝑋 − 𝑊𝐻𝑇||𝐹

2. 𝐻𝑛𝑒𝑤 ← min
{𝐻}≥0

||𝑋 − 𝑊𝑛𝑒𝑤𝐻𝑇||𝐹

Nonnegative 
Least Squares 
Problems



Symmetric NMF
min

{𝐻}≥0
||𝐴 − 𝐻𝐻𝑇||𝐹

𝐴 = 𝐴𝑇

+≈

Graph Clustering:

Da Kuang, Chris Ding, Haesun Park, Symmetric Nonnegative 

Matrix Factorization for Graph Clustering, The 12th SIAM 

International Conference on Data Mining (SDM '12), pp. 106--

117, 2012.

→

Paper

Top Words : 
1. Acid
2. Protein
3. Activity
4. Synthesis
5. DNA

Top Words : 
1. Control
2. Systems
3. Design
4. Motor
5. Nonlinear



Random Compression for SymNMF

1. Ω𝑖𝑗 = 𝒩(0,1), a random matrix
2. 𝑄𝑅 = 𝐴Ω, compute orthonormal basis
3. T = 𝑄𝑇𝐴𝑄 ← small
4. 𝐴 ≈ 𝑄𝑇𝑄𝑇

min
{𝐻}≥0

||𝐴 − 𝐻𝐻𝑇||𝐹 → min
{𝐻}≥0

||𝑄𝑇𝑄𝑇 − 𝐻𝐻𝑇||𝐹

𝑄𝑇 𝑄𝑇𝑣  𝑖𝑠 𝑓𝑎𝑠𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝐴𝑣

N. Halko, P.-G. Martinsson, and J. A. Tropp, Finding structure with randomness: 

Probabilistic algorithms for constructing approximate matrix decompositions, (2009)

× =𝐴 Ω 𝐴Ω

𝑄
𝑄𝑇𝑄 = 𝐼

𝑅×
=𝐴Ω

𝑄 is an 
approximate 

basis for 𝐴



Dense Problem: Hypergraph

Switch to:

min
{𝐻}≥0

||𝑋 − 𝐻𝐻𝑇||𝐹

 

• 4x speed up
• Preserve solution quality

Start with:

min
{𝐻}≥0

||𝑄𝑇𝑄𝑇 − 𝐻𝐻𝑇||𝐹



Sparse Problem : Microsoft Academic Graph

Microsoft Academic Graph

1. ~37 million vertices

2. ~ 1 billion edges 



Row Sampling Least Squares

𝐴

=

𝑆𝐴

min
𝑥

𝐴𝑥 − 𝑏 2
2 

𝐴 is 𝑚 × 𝑘 and full rank
𝑥 is length 𝑘 
𝑏 is length 𝑚 

Obtain a distribution
𝑝1, … , 𝑝𝑖 … , 𝑝𝑚

For the rows of  𝐴 and 𝑏
→

min
𝑥

𝑆𝐴𝑥 − 𝑆𝑏 2
2 

𝑆 𝑖𝑠 𝑠 × 𝑚, 𝑠 < 𝑚
𝑆 samples row of 𝐴 and 𝑏

→

M. W. Mahoney, Randomized algorithms for matrices and data, CoRR

𝑤𝑖 ∝ 𝑝𝑖
−1

1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

𝑤1 0 0
0 𝑤2 0
0 0 𝑤3

𝑆

×



Sparse Problem : Microsoft Academic Graph

5.5x per iteration speed up

Microsoft Academic Graph

1. ~37 million vertices

2. ~ 1 billion edges 

Different types of 
randomization work for 
different problem!



End
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