Constrained Low-rank Approximation

Koby Hayashi

School of Computational Science and Engineering, College of Computing at the Georgia Institute of Technology

1.What is Low-rank Approximation?2.Applications of Low-rank Approximation3.Randomized Algorithms for Low-rank Approximation

Low-rank Matrix Approximation

Nonnegative Matrix Factorization (NMF)

$$\min_{\{W,H\}\geq 0} ||X - WH^T||_F$$

Why?

- Images
- Count Data
- (Hyper) Graphs
- Probabilities

NMF Example : Fashion MNIST Data Set

Clothing Categories :

- T-shirt/top
- Trouser
- Pullover
- Dress
- Bag Ect ...

Interpretability via parts-based representation

SVD

5

15

20 25

25 25 10 15 20 25 5 10

NMF

Netflix Prize

In 2006 Netflix offered \$1 million dollars to improve their recommendation algorithm by %10.

In 2009 a team improved the algorithm by %10.6 and won.

Netflix did not use their algorithm but adopted one that improved their method by only %8.43...

Why?

https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429

The Adopted Method

2 Main Techniques :

- 1. Restricted Boltzmann Machines
- 2. *Low-rank Matrix Approximation!*

Films

 H^T

X

Bell, Robert M. et al. "The BellKor solution to the Netflix Prize." (2007).

Again... Why?

In 2006 Netflix offered \$1 million dollars to improve their recommendation algorithm by %10.

In 2009 a team improved the algorithm by %10.6 and won.

Netflix did not use their algorithm but adopted one that improved their method by only %8.43...

Why?

- 1. Update-ability
- 2. Scalability
- Training data had 100 million ratings
- Real data had more than 5 billion

https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429

How to Scale

Phillip B. Gibbons @CMU

- 1. Scale up : increase resources on a single node
- 2. Scale out : use multiple nodes
- **3.** Scale down : reduce the amount of data or resources needed

https://github.com/ramkikannan/planc

S. Eswar, K. Hayashi, G. Ballard, R. Kannan, M. A. Matheson, and H. Park, "Planc: Parallel low-rank approximation with nonnegativity constraints," ACM Trans. Math. Softw.

S. Eswar, K. Hayashi, G. Ballard, R. Kannan, R. Vuduc, and H. Park, "Distributedmemory parallel symmetric nonnegative matrix factorization," in SC20: International Conference for High Performance Computing, Networking, Storage and Analysis, 2020

S. Eswar, B. Cobb, K. Hayashi, R. Kannan, G. Ballard, R. Vuduc, and H. Park. 2023. "Distributed-Memory Parallel JointNMF". In Proceedings of the 37th International Conference on Supercomputing (ICS '23).

Computing a Nonnegative Matrix Factorization

$$\min_{\{W,H\}\geq 0} ||X - WH^T||_F$$

Nonlinear – optimization problem! Its NP-HARD!

Repeat Until Converged:Nonnegative1.
$$W^{new} \leftarrow \min_{\{W\}\geq 0} ||X - WH^T||_F$$
Nonnegative2. $H^{new} \leftarrow \min_{\{H\}\geq 0} ||X - W^{new}H^T||_F$ Nonnegative

Gr Georgia Tech

Da Kuang, Chris Ding, Haesun Park, Symmetric Nonnegative Matrix Factorization for Graph Clustering, The 12th SIAM International Conference on Data Mining (SDM '12), pp. 106--117, 2012.

Random Compression for SymNMF

1. $\Omega_{ij} = \mathcal{N}(0,1)$, a random matrix *2.* $QR = A\Omega$, compute orthonormal basis 3. $T = Q^T A Q \leftarrow small$ 4. $A \approx QTQ^T$

Georgia

N. Halko, P.-G. Martinsson, and J. A. Tropp, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, (2009)

Dense Problem: Hypergraph

Georgia

• Preserve solution quality

Sparse Problem : Microsoft Academic Graph

		1e-6+9.99990000	00e-1 No	rmalized R	malized Res. for Mcrsft. Graph				
	10	-							
Ivesiada	9					•••••	Comp	ress	
	8								
	7								
	6								
	5								
	() 200	00 4000	Time	⁸⁰⁰⁰ in Seco	10000 nds	12000	14000	

Microsoft Academic Graph 1. ~37 million vertices 2. ~ 1 billion edges

Georgia

Row Sampling Least Squares

 $p_1, \ldots, p_i \ldots, p_m$ For the rows of A and b

$$\begin{array}{c} \min_{x} \|SAx - Sb\|_{2}^{2} \\ S \text{ is } s \times m, s < m \\ S \text{ samples row of } A \text{ and } b \end{array}$$

Georgia

M. W. Mahoney, Randomized algorithms for matrices and data, CoRR

Sparse Problem : Microsoft Academic Graph

Microsoft Academic Graph 1. ~37 million vertices 2. ~ 1 billion edges

Different types of randomization work for different problem!

End

Srinivas Eswar

Ramakrishnan Kannan

Haesun Park

Richard Vuduc

Ben Cobb

