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Works we will discuss

Theory

Experiment
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Overview

* Define “quantum tomography” and “variational” informally
* Define them formally

« Explain why we take a variational approach

« Show results

« Comment on the details

« Conclude

USC



Informal definitions
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Tomography by etymology

« tomos - slice, section (Greek, TOMOQ)
e graphé — to write, describe (Greek, ypagpw)
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Tomography by example
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Tomography by example
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Tomography by example




Variational approach to identity
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Variational approach to identity |

« Goal: Have an image of Junebug -

Junie presiding over his kingdom

USC DOE CSGF Program Review 1 1



The variational algorithm in action

gl

nj alzl =

USC

Ansatz: 718 x 766 gray rectangle
Cost: pixel difference

Update rule: interpolation (cheating)
Stopping criteria: cuteness

DOE CSGF Program Review
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And now, a formal introduction
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Quantum state tomography with a single qubit

A single qubit state can be represented by a 2 x 2 matrix with three param-

eters,
p T y Y Z _2 fo—I—’L 1_UZ

that satisfy |[0]| <1 (Le. vZ + v, +v7 < 1)
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Quantum state tomography with a single qubit

A single qubit state can be represented by a 2 x 2 matrix with three param-

eters,
(v v)—l 1+v. v, —1
,0 T 72’_2 U:U—I—’L 1_UZ

that satisfy |[0]| <1 (Le. vZ + v, +v7 < 1)

Visualization on Bloch sphere

Vx / T

FIG 1 in Daniel Lidar’s lecture notes on “open quantum systems”
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Quantum state tomography with a single qubit

A single qubit state can be represented by a 2 x 2 matrix with three param-

eters,
(v v)—l 1+v. v, —1
10 T 72’_2 U:U—I—’L 1_UZ

that satisfy |[0]| <1 (Le. vZ + v, +v7 < 1)

Visualization on Bloch sphere Quantum state tomography estimates (v, v, 0. )
2 Is v, positve? p— A
Is v, positve? p—H A
Is v, positve? p— /7 H

FIG 1 in Daniel Lidar’s lecture notes on “open quantum systems”
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Quantum state tomography scaling

An n qubit state has dimension d = 2™ and is defined by d* — 1 values of v,

1
p=gn T > ok (1)

USC DOE CSGF Program Review
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Quantum state tomography scaling

An n qubit state has dimension d = 2™ and is defined by d* — 1 values of v,

T 4™ —1
p=gnt > v (1)
1=1

Naively, full tomographyic reconstruction thus requires
1. Performing 4"~ ! measurements (exponential time)

2. Storing 4"~ ! floats (exponential memory)

USC DOE CSGF Program Review
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Quantum state tomography scaling
An n qubit state has dimension d = 2™ and is defined by d* — 1 values of v;
[
p=cnt D il (1)
i=1
Naively, full tomographyic reconstruction thus requires
1. Performing 4" ! measurements (exponential time)
2. Storing 4"~ ! floats (exponential memory)

and downstream manipulations such as computing expectation values, (A) =
Tr[Ap] require O(d?") time

USC DOE CSGF Program Review 19



The variational approach: A new identity for quantum
states

e Let us instead define a quantum state constructively

USC DOE CSGF Program Review 20



The variational approach: A new identity for quantum

states

e Let us instead define a quantum state constructively

e A quantum state is defined by a (low-depth) quantum circuit which we

can varitionally learn

USC

W(eh 927 (93)

W(047 957 06)

_}o(6)
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The variational approach: A new identity for quantum

states

e Let us instead define a quantum state constructively

e A quantum state is defined by a (low-depth) quantum circuit which we

can varitionally learn

e By construction, low-depth quantum circuits are efficient to store classi-

W(eh 927 93)

W(947 957 06)

_}o(6)

cally and efficient to prepare quantumly

USC

DOE CSGF Program Review
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Variational quantum state tomography example

A two qubit system

USC DOE CSGF Program Review
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Variational quantum state tomography example

A two qubit system in thermal
equilibrium with a bath

USC DOE CSGF Program Review 24



Variational quantum state tomography example

A two qubit system in thermal Abstract Gibbs representation
equilibrium with a bath

e PH
P~ Tyfe—BH]

USC DOE CSGF Program Review 25



Variational quantum state tomography example

A two qubit system in thermal
equilibrium with a bath

Abstract Gibbs representation

e PH
P Trle—PH]|

Matrix representation

/0031 0 0 —0.031)
0 0469 —0.469 0
0 —0469 0469 0
\—0.031 0 0 0.031
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Variational quantum state tomography example

Matrix representation

0.031
( 0

0
\ —0.031

0
0.469
—0.469
0

0
—0.469
0.469
0

~0.031)
0
0
0.031 /

Variational quantum circuit representation (ansatz)

0) —

0) —

W (0.47,0.99,0.47)

0)

USC

W (0.68,0.72,0.24)

DOE CSGF Program Review

0.058 0. 0.
0. 0.007 0.02
0. 0.02 0.053

-0.226 0. 0.

-0.226
0.
Q.

0.882
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Variational quantum state tomography example

0) — 0.058 0. 0. -0.226
0) W (0.47,0.99,0.47) 0. 9.007 0.02 9.
U:} I-V{([}.ﬁ& 0.72, (].24) 0. 0.02 0.053 0.
-0.226 ©. ©. 0.882
Cost value
10 ;
0.01}
107° |
1078 |
10—11 I
L I Iteration
0 5 10 15 20
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A couple algorithm results
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A snapshot of numerical results
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A snapshot of quantum hardware results

10—3.

USC
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1.0
Cshot7 R=4
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=
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A few comments on theory
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T

he quantum low-rank approximation problem

Given p= > A [Ai)Ai] A1 > A2 > ... > A\ >0, our task is to solve

o(R)=  argmin  [lp—oll ()
0>0,Tr[o]=1,rank(0)<R

Solution: The state

1—-T
o*(R) = 1 + Rr 78 e (2)
1 — Tr(ll
= lgrpllr + R[ iZd IR (3)

is the unique solution for p > 1 and one of many highly degenerate solutions
for p = 1.

USC
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The quantum low-rank approximation problem

Trace distance, not unique Hilbert-Schmidt distance, unique
FONO — {(MonAo2) s Tefo] =1} BN — {Owih)  Tefo] =1}
i {()\017 >\02) : DT(ﬁ, U) = Df}} I
0.8 ] 0.8
0.6; 0.6;
0.4f 0.4
0.2/ ] 0.2/
0.0 0.2 0.4 0.6 0.8 1.0
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Some comments on the cost function

We use Hilbert-Schmidt distnce C'(0) = ||p — 0(0)||5 as the cost function
e We prove it is classically hard to evaluate (under conjectures)
e We show it is quantumly easy

e Has a strong relationship to trace distance for low-rank states (avoids
usual pitfall of HS distance)

USC DOE CSGF Program Review
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A comment on sample complexity of learning unitaries

In the unitary learning paper, we show that we can learn train a variational
gate W(01,...,0;) to implement an unknown unitary U using only poly(k)

product states!!!
10—6 n
— 4
— 6
2 8
2 107 0
> Increasing — 12
é Layers
A
1078
| — P= Stua, (out-of-distribution risk)
1 P = SHaa®" (in-distribution risk)

1076 107 0 107
Cost, Cpy(2)(0opt)

USC DOE CSGF Program Review 36



Questions? (references on slide... for reference)

[1]
N. Ezzell et al., “Quantum mixed state compiling,” Quantum Sci. Technol.,
vol. 8, no. 3, p. 035001, Apr. 2023, doi: 10.1088/2058-9565/acc4e3.

[2]
M. C. Caro et al., “Out-of-distribution generalization for learning
guantum dynamics,” Nat Commun, vol. 14, no. 1, p. 3751, Jul. 2023, doi:
10.1038/s41467-023-39381-w.

[3]
N. Ezzell, Z. Holmes, and P. J. Coles, “The quantum low-rank
approximation problem.” arXiv, Mar. 31, 2022. doi:
10.48550/arXiv.2203.00811.

[4]
J. Gibbs et al., “Dynamical simulation via quantum machine learning
with provable generalization.” arXiv, Sep. 06, 2022. doi:
10.48550/arXiv.2204.10269.
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