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Reinforcement Learning
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Offline Reinforcement Learning
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(Offline) RL via Supervised Learning
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[Schmidhuber etal.,2019; Kumar et al.,2019; Ghosh et al., 2021; Chenetal.,2021]



Potential Benefits of Supervised Learning

More stable than RL
(Comparatively) easy to debug and validate

Success learning from large, precollected datasets
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What Ingredients are Important? (Prior Work)

Reweight training data (RCP: Kumar et al., 2019)

Iterative, online data collection (GCSL: Ghosh et al., 2021)

| Behavioral cloning on relabeled data |

Decision Transformer (DT: Chen et al., 2021)
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Key Questions

1. Which design decisions are critical for RL via supervised learning?
2. How well does it actually work?
3. What should we condition on? Does it matter?
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Our Methodology

Experiments across 4 suites, 26 environments, and 8 algorithms

Vary model architecture, capacity, regularization, and conditioning space

Can we distill just the essential elements?

Policy Distribution
BN Gaussian
W Discretized

0.0,
four_rooms claw  pusher  door
Environment

= N 2‘ C
re 5 GCSL results- th A

Figu




High-Performance Computing

Experiments across 4 suites, 26 environments, and 8 algorithms
- 5random seeds
- various policy architectures and distributions

Use Savio, the Berkeley Research Cluster!
- 470 nodes and 11,620 processor cores
- Nearly 450 peak teraFLOPS
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Our Neural Network Architecture
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Overall Performance

Suite = D4RL Gym
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~—— MLP matches performance of Transformer

~— TD learning beats RvS on random data
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Overall Performance
Suite = D4RL AntMaze
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Takeaways
You can do offline RL via pure supervised learning!
without reweighting data or Transformers

and achieve competitive results
across a wide variety of tasks

Model capacity, regularization, and the conditioning variable are key

Can we automate the choice of the conditioning variable?
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RvS in D4RL Kitchen

(3x speed)
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https://docs.google.com/file/d/1iL6ny9tgvTBD1jAjwRhjvzFmNhW96VQC/preview

