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Quantum computing is a type of computation that harnesses the unique properties of 

quantum mechanics at microscopic scales to perform calculations. 

Current challenge is to develop platforms that can 

control and manipulate many quantum bits (qubits)

Quantum computing with microscopic systems

1. Superposition: atom simultaneously in both 

electronic states

2. Entanglement: non-classical correlations 

between qubits enabled by superposition

electronic ground state electronic excited Rydberg state

Two electronic states in Rubidium atom form a qubit

Today: neutral atom quantum computers

Superconducting qubits (Google, IBM, Rigetti, MIT, Caltech, ETH 

Zurich, Princeton, Yale, …)

Photonic qubits (USTC, PsiQuantum, …)  
Ions (Maryland, IonQ, Innsbruk, 

Quantinuum, Honeywell …) 
Operations performed with external laser excitation

0 = 1 =



Harnessing quantum mechanics for 
computational speedup

Many quantum algorithms yield a quantum speedup 

over conventional “classical” computers

Quantum simulation

(1980s)

Factoring/Fourier transform

(1994)

Database search

(1996)

Solving linear systems of equations (2008)

Substantial progress in quantum 

hardware over the past few years 

Universal, low error operations
All-to-all connectivity 

between 100s of qubits

Images of individual atoms 

from the lab (2022)

Current devices cannot yet run large-
scale quantum algorithms.

Can we still observe quantum 
speedup in the near-term?

But, running these 

algorithms requires fine 

control over microscopic 

quantum systems.

Bluvstein et al. (2022) Nature 
604 (7906), 451-456

Evered, Bluvstein, Kalinowski 
et al. (2023) arXiv:2304.05420

See also Wisconsin, LKB, Princeton, Boulder, Caltech groups



Hardware-efficient optimization of Maximum 
Independent Set (MIS)

Excited Rydberg state: in 

independent set

Ground state: out of 

independent set

Rydberg interaction enforces 

independent set constraint

Maximum Independent Set: representative 

combinatorial optimization problem

Maximize: size of set of vertices

Independent set constraint: no 

vertices in set are connected by 

an edge

Unit disk graphs: edge between 

vertices within a unit radius

Naturally 

implemented in 

hardware

Arrange up to 289 Rb atoms (qubits) deterministically in 2D

Each qubit represents a vertex in the graph

Maximum 

independent set 

(MIS)

Ebadi*, Keesling*, Cain*, et al., Science 376, 6598 (2022)

Prepare system ground state via slow (adiabatic) 

evolution: maximize vertices in independent set

Key idea: focus on algorithms with a natural, hardware-efficient implementation



Exploring quantum performance
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Minimum gap (theory) (MHZ)

Experimental runtime too 

small to resolve gap

Cannot optimize algorithm 

Study over 100 graph instances

What makes a graph hard or easy for the 

quantum algorithm to solve?

Adiabatic theorem: 

MIS probability determined 

by minimum gap between 

ground and first excited state

(parameter changes during 

algorithm)

Minimum gap

Numerically computed 

for a 65-vertex graphRepeat to compute 

probability of finding MIS
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Size of independent set
55

1. Arrange atoms to 

chosen graph

3. Prepare large 

independent set

2. Optimized 

quantum 

evolution

Ebadi*, Keesling*, Cain*, et al., Science 376, 6598 (2022)



Benchmark quantum-classical performance 
on fundamentally hard graph instances

Current independent set

Updated set

1. Proposal (symmetric)

2. Accept with probability 

min 1, 𝑒−𝛽 ⋅ change in independent set size

Focus on simulated annealing: “classical analogue” of the quantum adiabatic algorithm

Prepares MIS at low temperature 

after many updates

Stochastically update a candidate 

spin configuration (spin ↔ vertex)
SA update (always 

accept for same-sized 

independent sets)

What controls SA time to find the MIS?

Optimal 

independent sets 

(size |MIS|)

Suboptimal 

independent sets 

(size |MIS|-1)



Benchmark quantum-classical performance 
on fundamentally hard graph instances

SA dynamics are unstructured search for MIS

Prove that SA runtime ≳
# suboptimal MIS −1 sets

# optimal MIS  sets

≡ SA hardness parameter ℋ𝒫
(SA runtime = time to reach steady-state with error < ½)

Prove that similar obstructions hold 

for classical parallel tempering and 

quantum Monte Carlo algorithms

Cain, Chattopadhyay, Liu, Samajdar, Pichler, 

Lukin (2023) arXiv:2306.13123

SA update (always 

accept for same-sized 

independent sets)

What controls SA time to find the MIS?

Optimal 

independent sets 

(size |MIS|)

Suboptimal 

independent sets 

(size |MIS|-1)



Utilize tensor-network computational methods 
to identify hard graph instances

Tensor-network approach 

to computing solution 

space properties of 

combinatorial 

optimization problems
Liu, Gao, Cain, Lukin, Wang 

(2022) SIAM JoSC 

• Compute MIS size, 

independence 

polynomial, enumerate 

MIS and |MIS|-1 

solutions

SA hardness parameter 

grows exponentially in 𝑛
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SA runtime

SA performance determined by 

hardness parameter 

ℋ𝒫 =
# suboptimal MIS −1 sets

# optimal MIS  sets

Benchmark quantum-classical performance 
on fundamentally hard graph instances

Ebadi*, Keesling*, Cain*, et al., Science 376, 6598 (2022)

Study top 2% hardest instances maximizing SA hardness parameter



SA runtime

Experimental data

Quantum hardness determined 

by minimum gap, not SA 

hardness parameter!

Benchmark quantum-classical performance 
on fundamentally hard graph instances

Ebadi*, Keesling*, Cain*, et al., Science 376, 6598 (2022)

Study top 2% hardest instances maximizing SA hardness parameter



Benchmark quantum-classical performance 
on fundamentally hard graph instances

Ebadi*, Keesling*, Cain*, et al., Science 376, 6598 (2022)

Study top 2% hardest instances maximizing SA hardness parameter

Near-quadratic speedup on 

instances in deep circuit regime: 

minimum gap large enough to optimize 

the quantum algorithm’s evolution

What controls the minimum gap, and 

therefore the quantum performance?

Optimized exp. runtime

SA runtime

All exp. runtime



Hardware-efficient way to observe a 
Grover speedup?

Grover’s search: quadratic speedup over all 

classical algorithms in unstructured search for a 

marked item

|MIS|-1

|MIS|-1

|MIS|-1

|MIS|-1

|MIS| 

|MIS|-1

…
…

Best classical strategy

Random guessing, 𝑂 database size

Grover’s search 

𝑂 database size

Uniform, delocalized superposition → 

marked state

|MIS|-1

|MIS|-1

|MIS|-1

|MIS|-1

|MIS| 

|MIS|-1

…
…



Hardware-efficient way to observe a 
Grover speedup?

Grover’s search: quadratic speedup over all 

classical algorithms in unstructured search for a 

marked item

Standard approach requires 

complex circuits

Do we have a natural 

Grover-type speedup?

|MIS|-1

|MIS|-1

|MIS|-1

|MIS|-1

|MIS| 

|MIS|-1

…
…

Cain, Chattopadhyay, Liu, Samajdar, Pichler, Lukin (2023) arXiv:2306.13123

See also: Schiffer, Wild, Maskara, Cain, Lukin, Samajdar (2023) arXiv:2306.13131

Slowdown

An instance has a Grover-type speedup when 

its low-energy states are delocalized

Speedup

Localized instances can have a speedup or slowdown!
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Slowdown

Hardware-efficient way to observe a 
Grover speedup?

An instance has a Grover-type speedup when 

its low-energy states are delocalized

Cain, Chattopadhyay, Liu, Samajdar, Pichler, Lukin (2023) arXiv:2306.13123

See also: Schiffer, Wild, Maskara, Cain, Lukin, Samajdar (2023) arXiv:2306.13131

Speedup

Localized instances can have a speedup or slowdown!

Experiment: many instances are delocalized, scatter 

comes from localized instances



Hardware-efficient way to observe a 
Grover speedup

Cain, Chattopadhyay, Liu, Samajdar, Pichler, Lukin (2023) arXiv:2306.13123

Develop a simple modification of the 

quantum adiabatic algorithm which 

obtains the Grover speedup in practice

How can we obtain a Grover-type 

speedup on instances that have poor 

performance due to localization?

Verify quantum speedup 

numerically via DMRG
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