Quantum speedup for combinatorial optimization with flat energy landscapes

Madelyn Cain, Lukin group Harvard University DOE CSGF Program Review

Quantum computing with microscopic systems

Quantum computing is a type of computation that harnesses the unique properties of quantum mechanics at microscopic scales to perform calculations.

Current challenge is to develop platforms that can control and manipulate many quantum bits (*qubits*)

Superconducting qubits (Google, IBM, Rigetti, MIT, Caltech, ETH Zurich, Princeton, Yale, ...)

Photonic qubits (USTC, PsiQuantum, ...)

Ions (Maryland, IonQ, Innsbruk, Quantinuum, Honeywell ...)

Today: neutral atom quantum computers

electronic ground state

electronic excited Rydberg state

Two electronic states in Rubidium atom form a qubit

- 1. Superposition: atom simultaneously in both electronic states
- 2. Entanglement: non-classical correlations between qubits enabled by superposition

Operations performed with external laser excitation

Harnessing quantum mechanics for computational speedup

Many quantum algorithms yield a **quantum speedup** over conventional "classical" computers

Solving linear systems of equations (2008)

But, running these algorithms requires fine control over microscopic quantum systems. **Substantial progress** in quantum hardware over the past few years

Universal, low error operations

Evered, Bluvstein, Kalinowski et al. (2023) arXiv:2304.05420 All-to-all connectivity between 100s of qubits Bluvstein et al. (2022) *Nature* 604 (7906), 451-456

Current devices cannot yet run largescale quantum algorithms.

Can we still observe quantum speedup in the near-term?

See also Wisconsin, LKB, Princeton, Boulder, Caltech groups

Hardware-efficient optimization of Maximum Independent Set (MIS)

Key idea: focus on algorithms with a natural, hardware-efficient implementation

Maximum Independent Set: representative combinatorial optimization problem

Maximize: size of set of vertices Independent set constraint: no vertices in set are connected by an edge

Unit disk graphs: edge between vertices within a unit radius

Arrange up to 289 Rb atoms (qubits) deterministically in 2D Each qubit represents a vertex in the graph

Prepare system ground state via slow (adiabatic) evolution: maximize vertices in independent set

Ebadi*, Keesling*, Cain*, et al., Science 376, 6598 (2022)

Exploring quantum performance

independent set

3. Prepare large

1. Arrange atoms to chosen graph

Repeat to compute probability of finding MIS

Ebadi*, Keesling*, Cain*, et al., Science 376, 6598 (2022)

Study over 100 graph instances

What makes a graph hard or easy for the quantum algorithm to solve?

Focus on simulated annealing: "classical analogue" of the quantum adiabatic algorithm

Stochastically update a candidate spin configuration (spin \leftrightarrow vertex)

1. Proposal (symmetric)

2. Accept with probability $\min(1, e^{-\beta \cdot \text{change in independent set size}})$

Prepares MIS at low temperature after many updates

What controls SA time to find the MIS?

SA dynamics are *unstructured search* for MIS Prove that SA runtime $\geq \frac{\# \text{ suboptimal } |\text{MIS}| - 1 \text{ sets}}{\# \text{ optimal } |\text{MIS}| \text{ sets}}$ \equiv SA hardness parameter \mathcal{HP} (SA runtime = time to reach steady-state with error < 1/2)

Prove that similar obstructions hold for classical parallel tempering and quantum Monte Carlo algorithms

Cain, Chattopadhyay, Liu, Samajdar, Pichler, Lukin (2023) arXiv:2306.13123

What controls SA time to find the MIS?

Utilize tensor-network computational methods to identify hard graph instances

Tensor-network approach to computing solution space properties of combinatorial optimization problems Liu, Gao, Cain, Lukin, Wang (2022) SIAM JoSC

 Compute MIS size, independence polynomial, enumerate MIS and |MIS|-1 solutions

Study top 2% hardest instances maximizing SA hardness parameter

Ebadi*, Keesling*, Cain*, et al., *Science* 376, 6598 (2022)

Study top 2% hardest instances maximizing SA hardness parameter

Quantum hardness determined by minimum gap, not SA hardness parameter!

Ebadi*, Keesling*, Cain*, et al., *Science* 376, 6598 (2022)

Study top 2% hardest instances maximizing SA hardness parameter

Near-quadratic speedup on instances in deep circuit regime: minimum gap large enough to optimize the quantum algorithm's evolution

What controls the minimum gap, and therefore the quantum performance?

Ebadi*, Keesling*, Cain*, et al., *Science* 376, 6598 (2022)

Hardware-efficient way to observe a Grover speedup?

Grover's search: quadratic speedup over all classical algorithms in unstructured search for a marked item

|MIS|-1

|MIS|-1

|MIS|

|MIS|-1

|MIS|-1

Best classical strategy Random guessing, *O*(database size)

Grover's search

O(√database size) Uniform, *delocalized* superposition → marked state

Hardware-efficient way to observe a *Grover speedup?*

Grover's search: quadratic speedup over all classical algorithms in unstructured search for a

marked item

|MIS|-1 |MIS|-1 |MIS|-1

|MIS|

|MIS|-1

|MIS|-1

Standard approach requires complex circuits

Do we have a *natural* Grover-type speedup? An instance has a Grover-type speedup when its low-energy states are *delocalized*

Localized instances can have a speedup or slowdown!

Cain, Chattopadhyay, Liu, Samajdar, Pichler, Lukin (2023) arXiv:2306.13123 See also: Schiffer, Wild, Maskara, Cain, Lukin, Samajdar (2023) arXiv:2306.13131

Hardware-efficient way to observe a *Grover speedup?*

Experiment: many instances are delocalized, scatter comes from localized instances

An instance has a Grover-type speedup when its low-energy states are *delocalized*

Cain, Chattopadhyay, Liu, Samajdar, Pichler, Lukin (2023) arXiv:2306.13123 See also: Schiffer, Wild, Maskara, Cain, Lukin, Samajdar (2023) arXiv:2306.13131

Hardware-efficient way to observe a *Grover speedup*

How can we obtain a Grover-type speedup on instances that have poor performance due to localization?

Develop a simple modification of the quantum adiabatic algorithm which obtains the Grover speedup in practice

numerically via DMRG y = xQuantum runtime ($1/\Omega$) 400 $y = \sqrt{x}$ $\lambda o \infty$ $\lambda = 5$ 300 System size 200 100 10^{0} 10^{2} 10^{0} 10^{4}

SA runtime lower bound

Cain, Chattopadhyay, Liu, Samajdar, Pichler, Lukin (2023) arXiv:2306.13123

Acknowledgements

Experimental team

Principal investigators

M. Lukin

V. Vuletić

M. Greiner

Theory team

Sambuddha Jin-Guo Chattopadhyay

Nash

Xun Gao

Rhine Samajdar

Leo

Zhou

Wang

Roger Sheng-Tao Luo

Boaz Barak

Subir Aram Sachdev Harrow

Edward Farhi

Hannes

Pichler

Soonwon Choi

Funding

