Quantum Algorithms for Jet Clustering

Annie Wei Joint work with Preksha Naik, Aram Harrow, Jesse Thaler (arXiv:1908.08949)

DOE CSGF Program Review

June 25 and July 1st, 2021

Quantum Algorithms for Jet Clustering

Introduction

Thrust

Classical Algorithms

Quantum Annealing

Quantum Search

Towards Jet Algorithms for the LHC

Quantum Computing

- > Definition: Using quantum systems to perform computations.
- Challenge: How do we identify problems where we get a speedup over classical computers?
- Main approaches:
 - Analog
 - Quantum simulation
 - Quantum annealing
 - Digital: define operations in terms of logic gates on qubits.

Why Quantum Computing for Particle Physics?

DOE QuantISED initiative:

- A. Cosmos and Qubits: applications of quantum error correction, scrambling, computational complexity to black holes and holography
- B. Foundational QIS-HEP Theory and Simulations: applications of quantum simulation; applications of quantum information and entanglement to field theory techniques
- C. Quantum Computing for HEP: applications of quantum machine learning and data analysis tools
- D. QIS-based Quantum Sensors: applications of quantum sensors to experiments
- E. Research Technology for QIST: apply accelerator technology to qubit technology

Goals of This Work

- Jets are collections of collimated, energetic hadrons formed in high-energy collisions.
- Identifying jets can be computationally intensive. Can quantum computers help?
- What would a realistic application of quantum search look like?
- Goal #1: investigate quantum algorithms.
- Goal #2: improve classical algorithms.

Case Study: Thrust

(Brandt, Peyrou, Sosnowski, Wroblewski '64; Farhi '77)

▶ For e^+e^- collision, find optimal separating plane to partition into two jets.

- Why thrust?
 - Thrust is a global optimization problem!
 - anti- k_t (default LHC algorithm) is $O(N \log N)$, vs $O(N^3)$ for thrust, but it is a local heuristic. Annie Wei Quantum Algorithms for Jet Clustering June 25 and July 1st. 2021

6 / 38

Quantum Computing

We will apply two key quantum computing paradigms.

- Quantum annealing: used in commercial hardware like D-Wave.
- ► Grover search: workhorse algorithm in quantum gate model.
 - Grover search finds desired item in size N database using only $O(\sqrt{N})$ time.
 - ► This is not realistic! Loading data that lives in classical memory takes at least O(N) time.
 - To obtain speedup, size of search space needs to scale like O(N^α), with α offsetting data loading cost.

Results

Implementation	Time Usage	Qubit Usage
Classical (Yamamoto '84)	$O(N^3)$	—
Classical: Sort	$O(N^2 \log N)$	—
Classical: Parallel Sort	$O(N \log N)$	—
Quantum Annealing	Gap Dependent	<i>O</i> (<i>N</i>)
Quantum Search: Sequential	$O(N^2)$	$O(\log N)$
Quantum Search: Parallel	$O(N \log N)$	$O(N \log N)$

▶ We improve the classical thrust algorithm using a trick from (Salam, Soyez '07)

We consider two quantum data loading models, sequential (fewer qubits but more time per query) and parallel (more qubits and less time per query).

Introduction

Thrust

Classical Algorithms

Quantum Annealing

Quantum Search

Towards Jet Algorithms for the LHC

Definition of Thrust: Partitioning Problem

• Given N three-momenta $\{\vec{p_i}\}$ in CM frame, find partition $H_L \cup H_R$ maximizing

$$T(H_L) = \frac{2\left|\sum_{i \in H_L} \vec{p}_i\right|}{\sum_{i=1}^N |\vec{p}_i|} = \frac{2\left|\sum_{i \in H_R} \vec{p}_i\right|}{\sum_{i=1}^N |\vec{p}_i|}.$$

• Brute-force classical strategy: $O(N 2^N)$. Motivates quantum annealing algorithm.

Quantum Algorithms for Jet Clustering

Definition of Thrust: Axis-Finding Problem

For \hat{n} a unit norm vector, find \hat{n}_{opt} maximizing

$$T(\hat{n}) = \frac{\sum_{i=1}^{N} |\hat{n} \cdot \vec{p}_i|}{\sum_{i=1}^{N} |\vec{p}_i|} = \frac{2 \sum_{i=1}^{N} \Theta(\hat{n} \cdot \vec{p}_i)(\hat{n} \cdot \vec{p}_i)}{\sum_{i=1}^{N} |\vec{p}_i|}$$

• Partitions particles into $\hat{n}_{opt} \cdot \vec{p_i} > 0$ and $\hat{n}_{opt} \cdot \vec{p_i} < 0$.

• Motivates classical $O(N^3)$ algorithm and Grover search algorithm.

Definition of Thrust: Duality

(Thaler '15)

- These two definitions of thrust are in fact equivalent.
- ► Can be shown by directly optimizing, over partition H with $\vec{P} = \sum_{i \in H} \vec{p_i}$, the objective function

$$O(ec{P}, \hat{n}) = \hat{n} \cdot ec{P} + \lambda (\hat{n}^2 - 1).$$

• Optimize over \hat{n} first:

$$\hat{n}_{opt} = rac{ec{P}}{ec{P}ec{}} \Rightarrow O(ec{P}, \hat{n}_{opt}) = ec{P}ec{}.$$

• Optimize over \vec{P} first:

$$ec{P}_{opt} = \sum_{i=1}^N \Theta(\hat{n}\cdot \vec{p_i}) ec{p_i} \Rightarrow O(ec{P}_{opt}, \hat{n}) = \sum_{i=1}^N \Theta(\hat{n}\cdot \vec{p_i}) (\hat{n}\cdot \vec{p_i}).$$

Quantum Algorithms for Jet Clustering

Introduction

Thrust

Classical Algorithms

Quantum Annealing

Quantum Search

Towards Jet Algorithms for the LHC

Classical Thrust Algorithm

(Yamamoto '84) Finds axis defining the separating plane.

1. For each pair $\vec{p_i}$, $\vec{p_j}$:

- Compute reference vector $\hat{r}_{ij} = \frac{\vec{p}_i \times \vec{p}_j}{|\vec{p}_i \times \vec{p}_i|}$.
- For each $\vec{p_k}$, assign to partition H_{ij} if $\hat{r}_{ij} \cdot \vec{p_k} > 0$, and ignore otherwise.

2. Return max $T(H_{ij})$.

► Requires time $O(N^3) = O(N^2) \times O(N)$ Number of H_{ii} Sum the $\vec{p_k}$ for each H_{ii} nAnnie Wei Quantum Algorithms for Jet Clustering

Classical Thrust Algorithm: Improvements via Sort

(Using Salam, Soyez '07)

- Traverse particles in special order to avoid redundant O(N) cost for each H_{ij} .
- 1. For each $\vec{p_i}$,
 - Sort $\vec{p_j}$ by azimuth b/w $\vec{p_j}$ and $\vec{p_i}$, obtaining $\{\vec{p_{j_1}}, \vec{p_{j_2}}, ...\}$.
 - For $\vec{p_{j_1}}$, loop over all $\vec{p_k}$, assigning to partition H_{ij_1} if $\hat{r}_{ij_1} \cdot \vec{p_k} > 0$.
 - For $\vec{p_{j_n}}$, $n \ge 2$, obtain $T(H_{ij_n})$ from $T(H_{ij_{n-1}})$ using the fact that only one particle ever enters and leaves $H_{ij_{n-1}}$.

Introduction

Thrust

Classical Algorithms

Quantum Annealing

Quantum Search

Towards Jet Algorithms for the LHC

Quantum Annealing

- Existing hardware like D-Wave are quantum annealers.
- Hardware consists of spins on a lattice; challenge is controlling connectivity between spins.
- Solution to optimization problem is encoded in the ground state of an Ising-like Hamiltonian.

Annie Wei

Quantum Algorithms for Jet Clustering

Quantum Annealing: Thrust (1/2)

• Equivalently, for $x_i \in \{0, 1\}$, we want to minimize the QUBO objective function

$$O(\{x_i\}) = \sum_{i,j=1}^N Q_{ij} x_i x_j.$$

- Remarkably, thrust can be written in QUBO form!
- Recall definition of thrust as a partitioning problem.

Quantum Annealing: Thrust (2/2)

- ▶ Partition *H* has total three-momentum $\vec{P}(\{x_i\}) = \sum_{i=1}^{N} \vec{p_i} x_i$, where $x_i = 1$ for $i \in H$ and $x_i = 0$ otherwise. Then $T(H) \propto |\vec{P}|$.
- This is monotonic \Rightarrow square to obtain QUBO function:

Introduction

Thrust

Classical Algorithms

Quantum Annealing

Quantum Search

Towards Jet Algorithms for the LHC

Quantum Search (1/2)

- Search is the backbone of optimization algorithms.
- Grover search performs search in the quantum gate model.
 - In this model, algorithm = prepare initial state, apply unitary gates, measure to obtain desired final state.
 - Grover uses \sqrt{K} gates to search K items.

Quantum Search (2/2)

Grover search (Grover '96; Boyer, Brassard, Hoyer, Tapp '98):

- 1. Prepare initial state $|\psi_0\rangle = \frac{1}{\sqrt{K}} \sum_{i=1}^{K} |i\rangle$.
- 2. Repeat $O(\sqrt{K})$ times:
 - Reflect about marked states.
 - Reflect about initial state $|\psi_0\rangle$.

Quantum Search: Maximum Finding

- Maximum finding algorithm (Durr, Hoyer '96): Return max of array using Grover search.
 - Track best max so far; marked states are those larger than current max.
- We will apply this algorithm to thrust search space of size K = O(N²) ⇒ outer Grover loop scales like O(N).

Quantum Search: Thrust Algorithm (1/2)

Schematically,

- 1. Pick random indices *m*, *n* corresponding to current max.
- 2. Repeat O(N) times:
 - Prepare initial state $|\psi_0\rangle = \frac{1}{2N} \sum_{i,j=1}^{2N} |i\rangle |j\rangle |0\rangle |0\rangle |0\rangle |0\rangle |0\rangle.$
 - Reflect about marked states:
 - 2.1 Compute T_{ij} , mapping $|i\rangle |j\rangle |0\rangle |0\rangle |0\rangle |0\rangle |0\rangle \mapsto |i\rangle |j\rangle |0\rangle |0\rangle |0\rangle |\hat{0}\rangle |0\rangle |T_{ij}\rangle$.
 - 2.2 Apply phase to states with $T_{ij} > T_{mn}$, mapping $|i\rangle |j\rangle |0\rangle |0\rangle |\hat{0}\rangle |0\rangle |T_{ij}\rangle \mapsto (-1)^{\Theta(T_{ij} - T_{mn})} |i\rangle |j\rangle |0\rangle |0\rangle |\hat{0}\rangle |0\rangle |T_{ij}\rangle.$
 - 2.3 Uncompute intermediate registers.
 - Reflect about initial state.
 - Measure *i*, *j* register. If $T_{ij} > T_{mn}$ update *m*, *n*.

Quantum Search: Data Loading (1/2)

- Grover algorithm assumed ability to prepare superposition over all items.
- ► Collider data lives on classical hard drive, not in quantum superposition!

Quantum Search: Data Loading (2/2)

- > Data loading needs to happen in the step that computes T_{ii} .
- Define two abstract unitary operations:

 - ► LOOKUP: $U_{LOOKUP} |i\rangle |\vec{0}\rangle = |i\rangle |\vec{p}_i\rangle$. ► SUM: $U_{SUM} |c\rangle |0\rangle = |c\rangle |\sum_{k=1}^{N} f(\vec{p}_k; c)\rangle$.
- Essentially, the data on the hard drive tell us which unitaries to apply.

Quantum Search: Thrust Algorithm (2/2)

How to compute T_{ij} using LOOKUP and SUM:

- 1. Load $\vec{p_i}, \vec{p_j}$ using LOOKUP: $|i\rangle |j\rangle |\vec{0}\rangle |\vec{0}\rangle |\vec{0}\rangle |0\rangle \mapsto |i\rangle |j\rangle |\vec{p_i}\rangle |\vec{p_j}\rangle |\hat{0}\rangle |0\rangle$.
- 2. Calculate \hat{r}_{ij} using \vec{p}_i , \vec{p}_j : $|i\rangle |j\rangle |\vec{p}_i\rangle |\vec{p}_j\rangle |\hat{0}\rangle |0\rangle \mapsto |i\rangle |j\rangle |\vec{p}_i\rangle |\vec{p}_j\rangle |\vec{r}_{ij}\rangle |0\rangle$.
- 3. Apply SUM with $f(\vec{p_k}; \hat{r}_{ij}) = \{\vec{p_k} \text{ if } \hat{r}_{ij} \cdot \vec{p_k} > 0; \vec{0} \text{ if } \hat{r}_{ij} \cdot \vec{p_k} < 0\}$ to sum momentum in H_{ij} : $|i\rangle |j\rangle |\vec{p_i}\rangle |\vec{p_j}\rangle |\vec{r_{ij}}\rangle |\vec{0}\rangle |0\rangle \Rightarrow |i\rangle |j\rangle |\vec{p_i}\rangle |\vec{p_j}\rangle |\vec{r_{ij}}\rangle |\vec{0}\rangle.$
- 4. Divide by normalization factors to obtain thrust: $|i\rangle |j\rangle |\vec{p_i}\rangle |\vec{p_j}\rangle |\vec{r_{ij}}\rangle |\vec{P_{ij}}\rangle |0\rangle \mapsto |i\rangle |j\rangle |\vec{p_i}\rangle |\vec{p_j}\rangle |\vec{r_{ij}}\rangle |\vec{P_{ij}}\rangle |T_{ij}\rangle.$
- 5. Uncompute intermediate registers:

 $|i\rangle |j\rangle |\vec{p_i}\rangle |\vec{p_j}\rangle |\vec{r_{ij}}\rangle |\vec{P_{ij}}\rangle |T_{ij}\rangle \mapsto |i\rangle |j\rangle |\vec{0}\rangle |\vec{0}\rangle |\vec{0}\rangle |\vec{0}\rangle |T_{ij}\rangle.$

Runtime: $O(N(C_{LOOKUP} + C_{SUM}))$.

Quantum Search: Sequential Model

- LOOKUP and SUM require O(N) time and $O(\log N)$ qubits.
- ▶ LOOKUP has one register of size $O(\log N)$ to store *i*, $\vec{p_i}$.
- LOOKUP scans all N items in classical database, returning $\vec{p_i}$.
- SUM scans all N items in classical database to compute $\sum_{i=1}^{N} f(\vec{p_i}; c)$.
- Thrust algorithm requires $O(N^2)$ time and $O(\log N)$ qubits.

Introduction

Thrust

Classical Algorithms

Quantum Annealing

Quantum Search

Towards Jet Algorithms for the LHC

Towards Jet Algorithms for the LHC

How does the thrust case differ from LHC jet algorithms?

- Different coordinate system from e^+e^- collisions.
- ▶ Divide event into single jet with opening angle *R*, plus unclustered region:

• Thrust case is $R = \pi/2$.

Jet Function Maximization

(Georgi '14)

► Find the subset of particles that maximizes the following function (β = 1/(1 - cos R)):

$$O(P_{\mu})=E-etarac{M^2}{E}.$$

- This is a global optimization problem!
- Quantum anneal using modified QUBO objective function:

$$O'(P_{\mu}) = E^2 - \beta M^2 = \sum_{i,j=1}^N \beta \left(\vec{p_i} \cdot \vec{p_j} + \frac{1-\beta}{\beta} E_i E_j \right) x_i x_j.$$

Multi-region Optimization

Simultaneously find M jets.

- O(N(M+1)) qubits x_{ir} , $i \in \{1, 2, ..., N\}$, $r \in \{1, 2, ..., M\}$.
- Generalize modified jet function objective function

$$O(\{x_{ij}\}) = \sum_{r=1}^{M} \sum_{i,j=1}^{N} \beta\left(\vec{p_i} \cdot \vec{p_j} + \frac{1-\beta}{\beta} E_i E_j\right) x_{ir} x_{jr}$$
$$+ \Lambda \sum_{i=1}^{N} \left(1 - \sum_{r=0}^{M} x_{ir}\right)^2.$$

Last penalty term ensures each particle is only assigned to one region.

Introduction

Thrust

Classical Algorithms

Quantum Annealing

Quantum Search

Towards Jet Algorithms for the LHC

Conclusions

- Explored how to realistically apply quantum computing to collider physics problems.
 - In particular, how do we handle data loading in the quantum gate model?
 - Improved classical $O(N^3)$ thrust algorithm to $O(N^2 \log N)$ classical algorithm and $O(N^2)$ quantum algorithm.
- Considerations are relevant to broader optimization and clustering problems.

Future Directions

Can we identify other interesting problems from collider physics where the cost of data read-in is O(N), while the size of the search space goes like O(N^α) for large α?